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ABEL'S THEOREM FOR OPEN RIEMANN SURFACES

Lars V. Ahlfors

1. The theory of singular abelian differentials on open
Riemann surfaces is very new and has not yet led to definitive
results, The problem has been dealt with in the thesis of Bader
and papers of L., Myrberg. These papers secem to open up certain
possibilities, but they are also indicative of the difficulties that
lie ahead.

One can agree with these authors that the main difficulty
begins with the presence of infinitely many poles. However, the
case of a finite number of singularities is not as innocuous as
it may seem at first glance. Inevitably, in the finite case one
must make the connection with the theory of differentials with a
finite square norm, first developed by Nevanlinna. I propose to
show that there exists in this framework, and for arbitrary
Riemann surfaces, a satisfactory theory that culminates in a close
analog of Abel's theorem. This is the first time, except for very
special examples, that the role of Abel's theorem for the theory

of open Riemann surfaces has been investigated.

2. We denote by I' or I{W) the Hilbert space of square

integrable differentials on a Riemann surface W with the usual

T — e T wTwE



LARS V. AHLFORS

definition of inner products; it is convenient to regard I' as a com-
plex vector space. There are two particularly important subspaces:
Fc , the space of closed differentials, and l"e , the space of exact
differentials. Within the class C' closed and exact differentials
are defined in the usual way, and the definition is extended to arbi-
trary differentials by forming the closure. We use notations like

in and I‘: for the subspaces formed by the conjugates of differ-
entials in I"C and l"e respectively. It is well known that

L. = I"C mr: is the space of harmonic differentials.

h

Two new subspaces Fco and Feo are introduced by the

orthogonal decomposition I'= I :l—f"': =T %+1' . Clearly, the
c eo e co

differentials in Fco and feo are characterized by a certain null-
behavior near the ideal boundary, but it is needless and difficult to
describe this behavior in precise terms.

When the two orthogonal decompositions I'= l‘c :FL‘ZO and
=10 + f‘e are superimposed on each other one finds de Rham's
three way decomposition I'= Fh ;Feo ;—I‘ZO. It specializes to

]."C = I‘h ;Feo; this decomposition shows that as far as periods and
boundary behavior are concerned the theory of closed differentials

can be replaced by that of harmonic differentials.

I have found it very useful to introduce still another subspace.

11-8
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ABEL'S THEOREM FOR OPEN RIEMANN SURFACES
On examining the homologies on W we find that certain cycles
have the property of being homologous to a cycle that lies outside
of any compact set. They are sometimes said to be weakly homo-

logous to 0; personally, I prefer to call them dividing cycles. We

shall say that a differential is semi-exact if it has zero periods
along all dividing cycles, and I denote the class of semi-exact
differentials by Pse' Of course, I have in mind a modified defin-

ition which makes Pse a closed subspace.

The inclusion relations between the various subspaces are

indicated in the following diagram:

r
C
U
C/ Pse
O
r T
CO e
U
\% N r
CO e
)
T
eo

3. For many purposes it is sufficient to consider the inter-

sections of these subspaces with I‘h. For brevity we write

I = [ = =TI .
h I‘e 1he, I‘COOFe Lo I‘h ﬂl“se hso Note that

II-9



LARS V. AHLFORS

h eo

With these notations one has for instance the very important

o

«g . = l_\ $ . -
orthogonal decomposition Fh ho +Fhe We see that Fho co

incides with ]."h if and only if there are no non-constant harmonic

functions with a finite Dirichlet-integral (the surface is of class
OHD)°

Our definition of the class Pho has been rather implicit,
and in the general case it is not easy to recognize whether a
harmonic differential belongs to this class or not. However, if W
happens to be of finite connectivity, they can be spotted at once.

Such a surface can indeed be considered as the interior of a com-

pact bordered Riemann surface with a finite number of analytic

contours (pointlike contours may be omitted). In this representation

it is found that the differentials of class Fho are those that vanish

along the boundary.

In the case of finite connectivity it is easy to see, moreover,

&
that I 5 and I o ﬂrhe are orthogonal complements. The elem-

hse h
ents of I"ho M Phe are the differentials of harmonic functions which

have a constant value on each contour. Since any such function can

be expressed as a linear combination of harmonic measures in the

II-10



- ¢ AR T T W TeemE T e T

g

ABEL'S THEOREM FOR OPEN RIEMANN SURFACES

traditional sense I will set I° (I =TI » and I shall allow my-
ho he hm

self to refer to the elements of th as harmonic measures. This

notation yields the decomposition Fh = rhm + P;se'

What we have said applies only to the case of finite connec-
tivity., However, it is entirely appropriate to postulate a corres-
ponding decomposition in the general case. In other words, we

%
define I as the orthogonal complement of I . Itis then
hm hse
quite easy to see that I‘th l—‘ho ﬂl"he, but there is no reason to

expect that these subspaces are always identical. So far, however,

this question remains open,

The class Fhm plays a very important role in the sub-
sequent study of singular differentials. It is therefore desirable
to have a more direct characterization of differentials in this

class. If Q denotes a generic compact subregion of W with

analytic boundary, one can show that I‘hm(W) = lim Fhm(Q),
Q— W

in the obvious sense of norm-convergence. Since the elements of

th(Q) are determined by linear combinations of harmonic

measures in the classical sense, this is an explicit construction

Principle. Limitations of space do not allow me to present the

Proof, which is quite simple.

II-11



LARS V. AHLFORS

4. We illustrate the construction of harmonic differentials
with singularities by looking at a differential of the second kind with

a given double pole, Since we are using complex harmonic differ-

. . s d
entials we may assume that the singularity is of the form z 5

(z-%)

(z is a local parameter, and { is a particular value of z). The
classical construction goes as follows:

First one constructs, in some elementary manner, a closed
differential 8 which has the given singularity and vanishes outside of a
compact set. Because of the form of the singularity it is found that

i6  has the same singularity as 6. Therefore, 6 - i~ is square

integrable, and by the decomposition theorem we can write

R %
0-i0 =w +w_ +w
h eo eo
where the notation is self-explanatory (wh € Fh’ weo' w‘eo £ Feo)'
It follows that
L% %
w=0-w =i6 4w + W
eo h eo

is closed and co-closed, that is to say harmonic, with the right
singularity.

More generally, this construction can be used to obtain a

1I-12
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| ABEL'S THEOREM FOR OPEN RIEMANN SURFACES

1 harmonic differential with a finite number of given singularities
and a finite number of prescribed periods over non-dividing cycles.
The construction of € is always elementary, but unfortunately the
final result is not unique. Indeed, we can add to 6 an arbitrary

exact differential which vanishes outside of a compact set. Such a

differential is of class Pco M Fe’ but not necessarily of class I" ,

eo

and this means that w may depend on the choice of 6.

To improve the method we decompose Wy into Y + w;se

and introduce

sk b

+w .
S eo

L%
T—G-weo-whmzle +whs

Then 7 is again harmonic with the right singularities and periods,

oo

and in addition 'r* is semi-exact. Now T is unique. To see this,

suppose that we replace 6 by 6' and construct the corresponding

T'. The difference is of the form T -7' =6 -08' +w +w, .

f eo hm
Since © - 6' is exact and vanishes near the ideal boundary it is

! easy to verify, by explicit integration, that 6 - 8' is orthogonal

to I* . The same is trivially true of w . Hence 7 -7' ¢ I. |,
hse eo hm

sk
but since the difference is also in Fhse we conclude that 7' = 7.
Consider the canonical decomposition T = ¢+ Z where ¢

. and ¢ are analytic., Because 7 has analytic singularities it turns

i II-13



LARS3 V., AHLFORS

out that ¢ inherits the singularities while ¢ is singularity-free,

and hence square integrable., Note that ¢ and ¢ are both semi-

exact.

-~

5. Let the singular differential with double pole (z-¢) “dz

!

be denoted by TC, = ¢§, + EC,' It is easy to see that zyg is almost,
but not quite, the reproducing kernel of Bergman., Morc precisely,
it has the reproducing property for all semi-exact analytic differ-
entials. ¢ . bears a similar rclationship to the singular kernel of

Schiffer-Spencer.

Higher singularities can be obtained by differentiation with

respect to ¢, simple poles and periods are generated by integration.

To be specific, let ¢ be a singular chain, and set

7(c) = ¢(c) + @lc) = § <l>€d§ + ] r/fgdé-

C o4

Then 7(c) has simple poles at the end point of ¢. Moreover, the

periods will be determined by intersection numbers: one finds that

1
i J T(Cl)—C1XC2.
2

What is more, one proves that T7(c) is canonically associated with

11-14
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these singularities and periods in the sense of our unique con-
struction, Let us also note that the reproducing property is
expressed by the formula
(*) (a,¢(c)) = 27f a

c
which is valid for all semi-exact analytic a.

What happens if ¢ is a cycle? Then ¢(c) and y(c) are
both regular. Since the periods of 7(c) are multiples of 27i we
find that Re 7(c) is exact. But this implies, by the uniqueness of
our construction, that Re 7(c) = 0. This is possible only so that
¢(c) = -¥(c), and thus 7(c) = -2i Im ¢(c). Let us introduce one more
notation: y(c) = % 7(c) = —-177 Im ¢(c). Then x(c) has integral
periods; precisely, the period of x(c) along a cycle c¢' equals
cXc',

If c is a dividing cycle we deduce that x(c) is exact, and
therefore zero. The important thing is that the converse holds as
well. Let {ai’bj} be a canonical homology basis modulo the
dividing cycles. An arbitrary cycle c¢ can be represented as a
finite sum X (xiai + yjbj), again modulo the dividing cycles, It
follows that x(c) = % (xix(ai) + yix(bj)), and if x(c) = 0 it is easily

deduced that all the x; and Yj are zero. Hence y(c) = 0 implies

II-15



LARS V. AHLFORS

indeed that c¢ is a dividing cycle.

Finally, the reproducing property implies

(ar x(€)) =] a
C

for all ace rase (= analytic and semi-exact). In other words, x(c)

serves to compute the periods of all semi-exact analytic differentials.

6. Before we come to Abel's theorem, let me restate the
characteristic properties of the differential 7 that we have asso-

ciated with a given set of singularities and periods:

1) T is harmonic except for a finite number of isolated

singularities,
%
2) 7 ls semi-exact,

3) outside of a compact set T can be represented in

the form w, +w .
hm eo

We shall say that a differential with these properties is canonical.
We have shown -- and this is the reason for introducing the whole

concept -- that a canonical differential is completely determined by

its singularities and periods.

I1-16
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We shall carry over the notation x(c) = - l; Im ¥(c) to
arbitrary chains c. If ¢ happens to be a cycle we know that x(c)
has integral periods; what is more, we have also x{c) = -2-177_1— 7(c),
so that y(c) is canonical. It follows that we can write x(c) as a
finite linear combination of X(ai)’ X(bj)' Differentials with such
a representation will be called modular.

We propose to answer the following question: For what
chains ¢ is yx(c) modular? Clearly, in view of what we have al-
ready shown the answer depends only on the boundary odc.

Suppose first that x(c) is modular., We can write
9(c) + ¥(c) = 7(c) + ¥(c) - Ylc) = 7(c) - 27i x(c). Hence ¢(c) + y(c)
is canonical, and its periods are multiples of 27i. Because of the
latter property we can set ¢(c) + ¥(c) = d log £, where f is a
single-valued meromorphic function with a finite number of zeros
and poles. It is seen that the zeros and poles correspond precisely

to the coefficients of dc. In other words, dc is the divisor of f,

We shall say that f is quasi-rational if and only if dlog {

is canonical. This implies that f has only a finite number of zeros
and poles, equally many of each.

Let us now start from a quasi-rational function f, It is

1I-17



LARS V. AHLFORS

clear that we can construct a 7(c) which has exactly the same singu-
larities and periods as dlog f. This implies dlog f = T(c)

= ¢(c) + Ylc) + 27i x(c), and we deduce that x(c) is analytic. But
since x(c) is real it must be zero. We have found a chain ¢ with
boundary equal to the divisor of f which is such that x(c) = 0. It
follows that x(c') is modular for any other chain c' with the

same boundary.

ABEL'S THEOREM. The differential y(c) is modu-
lar if and only if dc is the divisor of a quasi-rational

function.

There is an equivalent formulation which has a more familiar
ring. If x(c) is modular we have seen that ¢ can be replaced by
another chain with the same boundary, such that x(c) is identic-

ally zero. Therefore, we obtain:

A 0-chain is the divisor of a quasi-rational function
if and only if it is the boundary of a singular l-chain ¢

with the property that

Ja=0
c

11-18
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for all semi-exact square integrable analytic differentials a.

Indeed, by formula (*) the condition is equivalent to ¥(c) = 0,

and hence to x(c) = 0,

Harvard University
Cambridge, Massachusetts
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DETERMINATION OF AN AUTOMORPHIC FUNCTION
FOR A GIVEN ANALYTIC EQUIVALENCE RELATION

Léonce Foures

1. INTRODUCTION

Let f(z) be meromorphic on a Riemann surface R.
f(gl) = f(gz) defines a local analytic relation between points in
Y = {(z

neighborhoods of zy and z, where f(z This relation

1 2.)'

may also be written gz = f_1= f(gl) = d)(?;l) and may be extended to
an analytic but not single-valued application of R onto itself.

Such a function ¢ is called an automorphism function for f or

briefly an automorphism for f.

An arbitrary analytic application of R onto itself is, in

general, not an automorphism function, Automorphisms for mero-

morphic functions have been studied by Shimizu, who determined also

the functions for which all the automorphisms are linear. This
determination has been obtained hy using Nevanlinna's proof of a
theorem of Bloch, and it can also be obtained by using parabolic
regularly ramified coverings of the plane. Important results have
also been obtained by G. af Haellstroem who studied very deeply
the cases f meromorphic and f algebraic.

If ¢ is an automorphism for f, this is also true for all

positive and negative iterates of ¢; if ¢ is another automorphism,

I1-20
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any function of the form ¢-¢ 1is also an automorphism for f. It may
happen that the product ¢+¢ is not well defined: ¥:¢ may split

into several automorphism functions for f, If, for instance, ¢ is an
automorphism, ¢-1 is again an automorphism and the same is true
for ¢-l°¢; the identity belongs to the set of functions of the form
¢_l-¢ , but usually ¢ is neither single-valued nor schlicht and

qS-le ¢ can be split into several functions.

2, THE EQUIVALENCE RELATION

Analytic equivalence relation. Instead of starting with

functions ¢i’ let us consider an equivalence relation on R; since
f is single-valued, the relation f(x) = f(y) is an equivalence

relation = on R which satisfies

I. The intersection of any compact set on R with
any coset of this relation is a finite set;

II. I Y, 2%, there exists between the local para-
meters of neighborhoods of X and Y, an

analytic relation y = ¢(x) which associates equi-

valent points.

11-21



DETERMINATION OF AN AUTOMORPHIC FUNCTION

One should remark that the analytic relation y = d(x) is

necessarily of the form

)

M y=Slext L+ g

1
where G(0) =0, G (0) =1, and g(0) =0 (G and g

are single-valued).

We have been able to establish that conditions I and II are sufficient
for the existence of a function f single-valued on R and assum-
ing equal values at equivalent points. In the present paper I intend
to give an explicit construction of such a function f by general-
izing Poincaré's theory of theta series.

This existence theorem enables us to obtain an interpreta-
tion of the special form (1) in terms of iteration. Let us suppose
that instead of the form (1) we have between local parameters of

neighborhoods of x and v, 2 general relation of the form

ige]
||—-‘

n

el

- - q q .
y = ¢(x) = ax (L+ax"+... + o x +aeo)s

then in the neighborhood of Y, there are q points corresponding
to x by ¢.

-1 . . . .
¢ associates p points in the neighborhood of X to each

11-22
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point in the neighborhood of Y, We get g(p-1) +1 equivalent

points in the neighborhood of X ; then applying ¢ again we get
q(p-1X(q-1) + @ equivalent points near Yo and by repeating this pro-
cess one may get an infinity of equivalent points in the neighborhood
of X s and this contradicts I. On the other hand, if ¢(x) is of the
form (1) there is a stabilization between ¢ and ¢—l and one gets only
p equivalent points in the vicinity of x4 points in the vicinity of
Vo One should note that there may be more than p equivalent

points near x .

The order p of the equivalence relation at X may be de-
fined as the maximum number of equivalent points in an arbitrarily
small neighborhood of X . Then in any neighborhood of X there
exists a particular neighborhood, and a local uniformizing para-
meter such that the ratio of the parameters of two equivalent points
is a p-th root of unity. It follows that the functions G and g in

(1) for the points X and y; are not independent of those for x

and yo.

Regular equivalence relation. Let us suppose we have an

analytic equivalence relation in the plane P (or a connected part

of it) and that this relation satisfies I and II.

I1-23
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Let us denote by A(x) the set of points which are equi-
valent to x (we call A(x) the orbit of x). A(V) will be the set of
points for which an equivalent is in V. A{x) will be called an

algebraic orbit if it contains at least one point of order greater

than 1. A(x) will be transcendental if for any neighborhood V(x)

one of the components of A(V(x)) is non-compact.

Let X' be obtained by removing all the algebraic and
transcendental orbits from P, andlet 2 bea compact region in
' - A(0).

V will be called a normal region if there are not two

equivalent points in V. One can prove that every function qSi which
associates equivalent points to points in V maps V conformally

and 1-1 onto a region Vi with the property Vi M Vj =@ for i#]j.

3. THE FUNCTION F(x)
Let us suppose first that P is unbounded. We intend to
study the behavior of the series
2
l¢! (x)]
i
z 2,2
i (e[

If V is a normal region

11-24
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2

|4, ()| )

>3 dw = g~ area of Vi on the sphere
Vol+]g, () ]7)

from which it follows that

2

9] ()] .

2)2 dm = Z ° K <7

(2) b
iVo+]e, ()]

where K = area of A(V) on the sphere.

One can easily prove

LEMMA 1. On every compact region V of area o,
there exists at least one point at which

61 60|

Z _—_—
Eo]e,60 |5

. T
is convergent and < el

With the help of a finite covering of 3} by circles Ck of
radius P, such that the circles concentric with these and of radius

2p are normal regions, one can show

1

LEMMA 2. ]¢—1| <% for every x in Z.
i

It is then possible to construct a square net over 3 with the sides

of the squares less than

p. In every square there exists by

16V2

Lemma 1 a point §j on which the series

II-25



DETERMINATION OF AN AUTOMORPHIC FUNCTION

. 2
EHENY

is convergent.

2
Foarleyle)l®)”

Then for every x belonging to the same square as gj one has

1 2 1 2
|61 (o) . EHEN)

—_——<

welo B arleel™’

We obtain

6 (x)°

THEOREM 1. The series X
i ¢i(x)

converges

absolutely and uniformly in ¥ where it defines a holo-

morphic function F(x).

This theorem has to be completed for the neighborhoods of
points belonging to A(0). For sucha point and its vicinity there is
only one exceptional value i(2) for which Lemma 2 does not hold:
this value is such that d)i(l)(x!) = 0, From this remark one may

obtain:

COMPLEMENT TO THEOREM l. F(x) is also de-
fined in a neighborhood of any point in A(0) and is

meromorphic in Z'.

11-26
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To establish Theorem 1 one has to show that F(x) is

single-valued. This will be done by showing that a continuation of

F(x) along a loop L permutes the functions (i)i in the series de-
fining F(x); one shows that by such a continuation one does not lose

any ¢. and one does not find the same ¢, twice; this is done by
1 1

. . . . -1
considering the continuation along the inverse loop L

If P (and hence X') is bounded, we may suppose X' in
the unit circle. One may remark that

) [d)l' (x) I Zdw = plane area of V., .
v i

2
One gets a lemma similar to Lemma 1 but with % I¢1' (x)|° replac-

162G |2

1

ing ¥ 52 . One can construct a square net as in the
)

i (1+]¢,(x)]
unbounded case and deformation theorems give |¢1' (x)| < )\](bl' €3]
where \ depends only on the side of the squares. The series

2
z ¢1' (x)” is then uniformly convergent and in the following takes

2
8 (x)
the place of % -

i ¢.(x)
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DETERMINATION OF AN AUTOMORPHIC FUNCTION

4, THE FUNCTION 0(x)

It is then possible to follow Poincaré's method. Let R(t)

be a rational function of t with poles aps CIERRE a in %' and

with finite behavior at infinity. All the equivalents of Gy e ap

are in X'. Let then Vo’ Vl’ .o s VP be normal neighborhoods

of O, CUEERE ap respectively. R(t) is bounded in

e

-U A(Vk) =3 and

8160
6(x) = ZR($,) =

i ¢, (x)

is then meromorphic in X', holomorphic in Zﬂ\. B(x) is bounded

*
in ¥ and certainly has poles in X'

Let then x and y be two equivalent points in .

dx, 2
(%)
o(x) = T Rix;)
i X,
1
_*
8(y) = T Rix;) - o)D)’
i X

it follows that if Rl ig another rational function with at least one

pole distinct from those of R then (for the correspondingly de-

fined function 61)

11-28
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0(x) _ 6(y)
6,(x) 8y

%
in Y and alsoin X'.

0(x)

The function £(x) = 5. (x)
1

assumes equal values at all points belong-
ing to the same orbit, Furthermore £(x) is not constant since

9(x) and Bl(x) do not have the same poles.

5. ALGEBRAIC ORBITS

Let us suppose that all points belonging to the same orbit
have the same order n (where n depends on the orbit).

In general the above defined f(x) has a transcendental
singularity at every point of an algebraic orbit, since nothing en-
sures that f(x) cannot assume the same value on an infinity of
different orbits. One should remark that the special structure of
multiple points did not play any role and the function f(x) would be
the same even if infinitely many points of an orbit would cluster at
a multiple point. One cannot hope to prove boundedness of the
Previously defined £(x) in a neighborhood of a multiple point.

A normal neighborhood of a multiple point will be conform-
ally mapped onto a circle, the equivalence relation being trans-
formed into a rotation.

One can show that all functions d)i are still schlicht and all

I1-29



DETERMINATION OF AN AUTOMORPHIC FUNCTION

proofs for the regular case still hold, but one has to replace inequal-

ity (2) by

61691

dw==n-+ K<n7m

(") 5

z
PV orle, el

where K = area of A(V) on the sphere.

n has a maximum on y since X is compact. One

9] (x)%

Furthermore

=0 when

should remark that, except for the case n = 2, 2 3
i d)i(X)

x belongs to an algebraic orbit; indeed, the set {qbi} can be split

into several subsets, all the functions contained in any particular

subset assuming the same value at x. It follows that the derivatives

of any two functions within the same subset differ only by a constant

factor, which is an n-th root of unity. However, absolute and

uniform convergence of the series in Theorem 1 must be deduced

from inequalities (2' ) together with deformation theorems which

apply only to schlicht functions.

General Case. Let there be given on R an equivalence

relation which satisfies 1 and II. One may suppose there are no

transcendental orbits by removing them if necessary from the

initial Riemann surface. I and II imply boundedness of the order

11-30
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. k

n(xk ) for every algebraic orbit Ak(xk € A ). Then there exists a
i i

number v, (for each algebraic orbit) and a covering (R'ﬁ, ¥) of R

k

"k
at the point x .
n(xki) ki

which is regularly ramified of order

e
3

One can define an analytic equivalence relation = on R :
x sy if ¥(x) = ¢(y), and this relation satisfies I and II. One may
* *
use the complex plane for R : every function f assuming equal
values at equivalent points of R’ defines a function f(x) assuming

equal values at equivalent points of R, f has already been con-

structed since 28 is the common order of all points of an algebraic

&
orbit on R .

University of Marseille
Marseille, France
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A THEOREM CONCERNINI THE EXISTENCE
OF DEFORMABLE CONFORMAL MAPS

Maurice Heins

1. We shall say that a Riemann surface F admits deform-

able conformal maps into itself (or belongs to the class ﬂ) provided

that there exists a continuous map f from F X [0,1] into F
satisfying the two conditions: (a) for each te [0,1], ft: p — f(p,t)
is a (directly) conformal map (not necessarily univalent) of F into
itself, (b) £ # f.

A problem which presents itself at once in the study of the
homotopy of conformal maps is to characterize the Riemann surfaces
of class £¥. It is easy to see that the sphere, the finite plane, the
punctured plane and the tori all belong to the class L. There
remain to be considered the Riemann surfaces with hyperbolic univer-
sal covering surface. These may be divided into two classes, one
being the class of hyperbolic Riemann surfaces, the other the class
of Riemann surfaces which themselves are not hyperbolic but which
have hyperbolic universal covering surface. No surface of this
latter class can belong to {7. The case of compact Riemann sur-
faces of genus > 2 is classical. There are only a finite number of

conformal maps of such a surface into itself. The validity of the

II-32
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assertion for the case of non-compact surfaces is established in
[3, §§6, 7). Thus there remain for consideration only the hyper-
bolic Riemann surfaces.

In this paper we shall establish the following theorem:

A hyperbolic Riemann surface belongs to the class &
if and only if it admits non-constant bounded analytic

functions.

That the existence of non-constant bounded analytic functions
is a sufficient condition for a Riemann surface to belong to the
class &J is of course trivial. We shall therefore confine our atten-
tion to showing that this condition is necessary for hyperbolic sur-
faces,

The proof will be based on our prior studies on the Lindelsf

g

principle [1] and Lindel&fian maps [2]. These papers will be referred

”

to henceforth as LP and LM respectively.
2. We recall [LM] that a non-constant meromorphic function
¢ whose domain is a hyperbolic Riemann surface is termed

Lindel&fian provided that

4
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|

|

2 n(r) G Lp7) < 4o
6(r)=w F

for pe F, we extended plane, ¢(p) + w. Here gF is the Green's

function of F and n(p) is the multiplicity of ¢ at Pp.
As a first step toward establishing the desired result, we

prove the following lemma:

‘ Let F and G denote hyperbolic Riemann surfaces.
\‘ Suppose that there exists a continuous map f from

F x[0,1] into G satisfying (i) ft: p — f(p,t) is a
(directly) conformal map of F into 5 for each
meromorphic function.

Proof: Let q ¢ F be such that fo(q) #fl(q). Let q,, de -
ke J

note the Green's function of 5. We introduce

|

\ t ¢ [0,1], (ii) fo # fl. Then F admits a Lindelsfian
|

|

|

h(e,0) = G lEp,t), fo(@]  (pot) e FXI0L

Let y denote a singular 1-cycle of F whose carrier omits the

| antecedents of fo(q) with respect to fo and fl' Then the period
' ‘ of the conjugate of h(p, 0) along Yy is congruent (mod 27) to the

period of the conjugate of h{(p,1) along Y. Consequently, there

\:‘lll. II-34
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exists a non-constant meromorphic function ¢ on F satisfying

log |é(p)| =h(p,1) - h(p,0).

By LM, §5b we conclude that ¢ is Lindeldfian.

3. Now a Lindeldfian meromorphic function is not of type
B! in the extended plane [LM, §6]. Consequently the closure of the
image of ¢ contains a subset of positive capacity at each point of
which ¢ is not of type Bf [LP, §17]. It follows that there exist

three harmonic functions Uy (k=1,2,3) on F satisfying:

(i) 0<u, <1, k=1,2,3, (ii) G.H. M. min(uk,uj) =0, k £ j. Here

k

"G.H.M. " denotes ''greatest harmonic minorant'’.

We see readily that at least one of Uss u3, say U, does not
admit a representation of the form
aw, + B -

where o and f are constants.

1

4, We turn now to the consideration of a };}:&erbolfc

Riemann surface F of class & and suppose that f(p,t) is an



THE EXISTENCE OF DEFORMABLE CONFORMAL MAPS

admitted continuous family of conformal maps of F into itself, We
consider in the present context functions u, and u, of §3.

If either u, oOF u, is the real part of an analytic function
on F, it is trivial that F admits non-constant bounded analytic
functions. We put this case aside.

It will be convenient to introduce the abelian differential
§v generated from a harmonic function Vv defined on a Riemann
surface. Specifically &v is the abelian differential given in the

parameter neighborhood as sociated with a local uniformizer T by
[(ve ), - i(ve 'r)y] (z = x + iy).

We observe that ¢5\.12/6u1 is not constant. If this were not the case
and 6u2/6u1 =a+ip (a, P real), then from 6(1).Z - ul) = iﬁéul we
would conclude either that u, js linear in u (8 = 0) or else that
the periods of 6u1 are both real and pure imaginary and hence that
uy is the real part of an analytic function on F (p # 0). Both of

these possibilities are excluded.

Further we note that

6u2 . 6(u2° g)
—1 0 = ——
5u) 50, 8)

I1-36
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where g is a conformal map into F.
We assert that for some (k ,t ), k =1,2, 0<t <1,
o o o o —

of -u ©of 1is not constant. It will then follow that there
Y t ko
o

exists on F a non-constant analytic function with bounded real part

since the periods of the conjugate of u e ft are independent of t,
o

0<t<1, and hence that F admits a non-constant bounded analytic

function.

If this assertion were not true, we would conclude that

6(u2° ft) 6u2

6(u1 ° ft) éu1 t

is independent of t, and hence that ft is independent of t. But

fo # fl. The contradiction is manifest.

£ * * /
r s
g Wi
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A DIRECT CONSTRUCTION OF ABELIAN DIFFERENTIALS
ON RIEMANN SURFACES

Albert Pfluger

The following theorem is a classical one: On a compact
Riemann surface there exists an Abelian integral of the first kind,
and up to a constant only one, whose periods have prescribed real
parts. An Abelian integral is the integral function of a holomorphic
differential a = w + i*w, where w is a harmonic form and *w its

adjoint form. Let g be the genus of the closed surface R and let

C,...,C

1 2¢ be a homology basis of 1-cycles for R. The above

theorem is equivalent to the following: If #_,...,7 are arbitrarily

1 2g

given real numbers, there exists exactly one harmonic form w on R

which satisfies the conditions

Jw=rm_, v=1,...,2¢g ‘

C v ¥

v ,’
Since a total harmonic form vanishes identically, w is o

-~

. . - . 444
uniquely determined by the periods L Rl
-

One way to prove the existence is by normalized differentials

of the third kind and is not a direct way. Another method uses
t

Dirichlet' s principle. It starts with a minimal sequence,v whose

existence is quite simply proved, but no construction of it is given.

4
The Purpose of this paper is to give a direct construction of a harmon-

I¢ form with given periods. Lo

L II-39
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\ Let « be a real closed linear differential form on R, that is

\ a linear form w =2 dx + b dy, where a and b are real functions of

the local uniformizer z = x +1y and satisfy the condition bX = ay.

‘ Let § be the linear space of these forms w. It is easy to construct

a closed w with prescribed periods. Two forms in £ are called

cohomologous, if they have the same periods. The problem is

to construct the harmonic form which is cohomologous to an arbitrary

|
|

\ \ given w e &
\ ce in § the inner product

For this purpose we introdu
(wl, wz) = {3\(@11312 + blbz) dx dy,

i =1,2, whereby becomes an inner product space. |

|
|
\‘ w, = ay dx+bi dy,

Let v be an element in € and put

ﬁ\‘\\\\ et 111

m\” where w runs through the cohomology class of W There exists a

H H sequence W ; n=1,2,... of elements in this cohomology class (wo),

Dirichlet's principle as serts that there
‘ n—>00

“\\H so that lim H"*’nH =d .
‘l]\ exists a ¢ in (wo) with \

| || =4, and this ¢ will then be har-
h a minimal

i
l‘\\\ﬂ monic. In the following we will give a construction of suc

l‘\‘. \\
| ~‘ sequence.

\“” H 11-40




DIRECT CONSTRUCTION OF ABELIAN DIFFERENTIALS

We choose a finite covering of the closed surface R by
2-cells Vo, .o Vk’ that is by simply connected domains bounded
by analytic curves. The union of these finitely many curves is
designated by A. Let [4] be the lincar space of all real contin-
uous functions f on R, which are continuously differentiable in

R - A and whose Dirichlet-Integral DR (f) is finite, Wec call

-A

(wo) = {wlw sw +df, fe [£1}

the "cohomology class' of W To every Vi we associate .an oper-
ator d)i, i=0,1,...,k, in the following way. Toa we (wo) there
exists a continuous function fi on Vi with dfi = in Vi - A, We
construct the harmonic function Fi in Vi’ which is continuous on

Vi and equals fi on the boundary of Vio This can be done by

Poisson's integral, because Vi is conformally equivalent with the ‘ﬂ:
. s
Circle., For any we (w,) we define qSiw by
LY 7
t:’;"
, ~
g
w in R -V, -7
1 .,.r' -
£
p.w = i=0,1,...5k.
i
d¥, in V, t
i i

3

QSi is obviously linear and d)iw again belongs to {w ).
o

-

II-41
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THE CONSTRUCTION: Starting with w, we put

pw_ =W ,n=0,1,..., where i runs permanently throuzh

the numbers 0,1,...,K alternately ascending and de-

scending.

g Ty By Ty e 911 T Ve
¢ ¥x "Y1’ T P Wor-2 T Yok ¢ Woro1 T 2K’
and so on:

i=20,1,2,.05K  v=L2iee. .

(1) Py paiol T P2k

We assert that the © converge to a harmonic form ¢ in (wo).
To prove-this statement we need the following

LEMMA 1: Let w and w' be two forms in (wo) and let

w' be harmonic in Vi' Then we have

(2) (v, w - ¢w)=0.

PROOF: Since W - d)iw =0 in R - Vi’ (2) is equivalent to

w,w - @.W = 0, this inner roduct being taken with respect to V..
i

But in Vi we have w = df, d)iw = dF and w' =du, where f=F on

the boundary of Vi’ D(F) < D(f) < 00, u harmonic with D{u) < o in

Vi' It will be easy to find a sequence of continuous and piecewise

11-42
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DIRECT CONSTRUCTION OF ABELIAN DIFFERENTIALS

smooth functions g, with compact support in Vi’ so that

lim D{(f - F - gn) = 0. From D(u,gn) = 0 it follows
n——s00
= ! .o -
D(u,f - F) = (0', & ¢iw)vi 0.
Going back to the sequence ey in (1) we take two positive

integers m and n with m = -_Pn(mod 2k), that is m = 2ku + 1,

n=2kr+1i,i=0,1,2,...,ksu,v=1,2,... . Fromw =4d¢.u
I n in

-1
and Lemma 1 it follows (w , w -w ) =0, since w is harmonic
m n-1 n m
in V. :
i
(3) (W ,w -w } =0, m = -l_-n(mod 2k).

From this property we conclude that {wn} is a Cauchy sequence.
But to do this we have no need to use the special nature of the w
and we can work in an abstract inner product space. The result,

which will be proved later, is the following:

4t
LEMMA 2: Let © be a real inner product ’
o S
57
space and {wn] , n=1,2,... asequence of ele- ‘ ;,"

ments in 2 with the property (3). Then [wn} is .
a Cauchy sequence.
To construct the harmonic form ¢, to which the {wn} are
to converge, we take a fixed cell Vi and put wi’*g%u

2ky+i’

P

»

I1-434
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»=0,1,2,... . By restriction to V,1 we have lim l L)l - wl l lV =0,
i U,V —>0 v H i !
The differentials w, are harmonic in Vi and form a Cauchy sequence

in the Hilbert space H(Vi) defined by the square integrable harmonic

differentials in Vi . We conclude that the sequence w' converges
v
. . . i
to a harmonic form ¢. in v.: lim | lw - 6.1 = 0. Because {uv}
1 i y iV n
y——>00 1

is a Cauchy sequence We also have

(4) lim \hon - ¢illv. =0, i=0,1,...,k
n—->00 i

Now let Vi and Vj be two overlapping cells. By restriction to the

intersection Viﬂ Vj, (4) gives

which leads to ‘ l(bi - d)jl lvinvj =0 or d)i = d)j in Vian. Thus, g

d)i and d)j are harmonic continuations of each other and the forms

d)i join together into a single harmonic form ¢ on R. ¥From

lim Hwn—(bHV =0,i=1,2,...,k, we conclude
n—>co i
(5) im |lo_-ollg =0

n—>»
which proves the statement given above. But we do not know from |

this whether ¢ belongs to the cohomology class (wo). To prove it
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does, we observe that all wn belong to (wo). Furthermore, to

each l-cycle C on R there exists in @ a form ec with

w=(0_.,w), weQ.

(6) c

£
J
C
The w,n= 0,1,2,... having all the same periods, we find by (6)

(6 sW - wo) = 0, From this and (5) we conclude (GC,¢ - wo) which

C
by (6) leads to [¢ = | w_ for all I-cycles C, thatis: ¢ and w
o o
C C
have the same periods,
PROOF OF LEMMA 2: Putm =n 1in (3). Then we get

2 2 2
Hwn— wn—lll = Hwn-lll - llwnH . Thus the norms Hwn'l

form a non-increasing, and therefore convergent, sequence:

(7) lim llwnll = d.
n-—>0o
Hence f~
R
ot
lim ||lw ~w . ||=0 S
n n-1 z
n—0o0 ,','z",

and by induction, for every fixed positive integer N:

(8) lim ||w
n—qo

n+N ~ wnH = 0.

i
I ms ~-n(mod 2k), we have n -1 = -(m+l)(mod 2k) too. From the

i #
€quation (3) and the corresponding one with n - 1 instead of m and

’ A
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m +1 instead of n: (wn-l’ wooT me) = 0, we get (wm,wn) = m+1’wn-
and by induction (wm+2.kv’w m) = ‘ \w m+kf/1 lz. From this we conclude
2 2 Z 2
me{—Zkz/ _me B me+2k.'H * HUmH } szm-%kuH and f
by (7)
lim | ok Y ml | =0, m = ki,

m, Vv —>00

This leads together with {8) to

lim ||w_ - H = 0,
m n
m, n-—>0

L]

which proves the Lemma. The ziven construction of harmonic forms
o

works well for compact Riemann surfaces, but the question arises

what happens for non-compact ones. We know by a theorem of Behnke &

and Stein that to any closed form W _ ona Riemann surface R there ;
exists a harmonic one with the same periods as wo, but more than

one, if R is non-compact. Even in the case that the norm

HwH=f(a2+b2)dxdy, w = a dx + b dy,
R

is finite, a harmonic form is not determined by its periods gener-

ally. But to every closed form w_  on R, with finite norm, there ;

exists one and only one harmonic form w with finite norm, such

that w and w have the same periods and W-® is orthogonal to

11-46
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the differentials of the continuous and continuously differentiable
functions with compact support. The question is, whether the
foregoing method can be used to construct such a harmonic form.
For this purpose let us start with a closed form Wy of finite

norm and a covering of the Riemann surface by 2-cells Vo %

IEERRE
Vm, ..+, which has to be infinite in the non-compact case. Simi-
larly as above we put wn+1 = ¢iwn, n=0,1,2,..., where now i runs

through the numbers 1,2,1,2,3,2,1,2,3,4,3,2,... . Will we obtain
a Cauchy sequence again? I cannot prove it because periodicity
plays an important role in Lemma 2. But a less direct way is the
following one. Let k be any positive number. With respect to the
cells Vo’ V.seeos Vk we construct a form ¢ Xk in exactly the same

1

manner as in the compact case. ¢ X is harmonic in the union of

th ) i -
e Vo’vl’ .o ,Vk and equals h'o elsewhere. As d)k is ortho r
;@
gonal to W, - oy i one proves, following usual patterns, that the #
0
sequence {d)k}’ k =1,2,..., converges to a harmonic form ¢ in ’,’

rd
g

the sense that | |¢ -qbkl | —> 0. This form satisfies all conditions

. 4o
given above,

Eidgensssische Technische Hochs chule
ZurlCh Switzerland
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THE FIRST VARIATIONS OF THE DOUSLAS FUNCTIONAL
AND THE PERIODS OF THE ABELIAN INTESRALS

OF THE FIRST KIND

H. E. Rauch

1. In the course of some investigations (Rauch [2], [3], [4])
on the problem of the moduli I encountered a formula connecting
the quantities in the title which seems novel and of possible value
in various problems in conformal mapping and Riemannian function
theory, although any such applications must await discussion on
another occasion. The first person to discover connections among
the quantities in question was J. Douglas [1] in his solution of the
general Plateau problem, but his use of a special representation
leaves the relationships buried implicitly, whereas I have made the
relationship more explicit and much simpler by the use of the
mechanism of the quadratic differential and its attendant apparatus

as first conceived by Teichmueller [5].

2. Let SZ and SW be two Riemann surfaces of the same

genus on which z and w denote respectively generic local |
7

st
-«

Written while the author was a temporary member at the
Institute of Mathematical Sciences, N.Y.U., undér a program
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parameters, Let ¢ be a homeomorphism of SZ on SW which is
continuously differentiable everywhere with the possible exception
of a finite number of points. Let Adwdw be a conformal metric

on Sw' By means of ¢ one may write on SZ:

1) )\dwd;:dez+2Fdxdy+Gdy2=bdzd;+2Re(adz2)

where z =x+1iy, b= (E + G)/2 and a = (E - G)/2 - iF.

Douglas's functional for the map ¢ is defined as

2)  I9) =g 23 ax ay

jig bdzdz
z

I

where the exterior product is used under the integral sign.

It is now necessary to consider what constitutes a variation.
An infinitesimal variation of the map ¢ of SZ on Sw can be con-
sidered to be an infinitesimal transformation of Sz on itself foll-
owed by ¢. In each parameter such a transformation will be given
by 2z —» 2z2' =z + cw” where ¢ 1is small, W is differentiable in
z and z and w°/dz = w" /dw in overlapping parameters z and w.
However, it is essential also to consider variations of the surface

SZ obtained as follows: put a new conformal metric on Sz defined

II-50
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THE FIRST VARIATIONS OF THE DOUGLAS FUNCTIONAL

by

— — 2
3) \'dz'dz' = bdzdz + 2¢ Re(qdz )

where qdz2 is an everywhere finite (but as yet not necessarily
analytic) quadratic differential and the new set of parameters z'
is defined by putting the right side of 3) in the form of the left
side.

Now in order to calculate the first variation of J(¢) under
the indicated changes of map ¢ and structure of SZ one must
express the latter type variation in the form z —> z + ew, too,
since in the present crude calculus that is the only way one can
proceed.

Rewriting 3) as

2
4) \'dz'dz' = bdzdz {l + 2¢ Re(d -2 _))
b 2

|z
setting z' = z + ew and comparing first powers of ¢ in 4) one
finds
15) ;_ = q/b.

z

o

However, the solution of 5) cannot be a tensor on Sz unless the

 II-51 #



H. E. RAUCH

change of type given by 3) be the trivial one obtained by an infinit-
esimal transformation of SZ onto itself. 5) is easily solved by an
integral formula analogous to the solutions of Poisson's equation
(Teichmueller [5], p. 8l) if one first uniformizes the surface by
means of, say, the Grenzkreis uniformization, in which case =z
will be the uniformizing variable. The solution will then be unique

up to analytic functions in z.

3., For such variation one can easily compute the first

variation of J(¢) (Rauch [3]) and find it to be
6) 87 =2¢ Im[[ o awdzdz +2 [[ o d{bledz - wdz)}.
z oz z

One can then, by Stokes' formula (d being the exterior differential),
transform the last term to an integral over the boundary I" of a
fundamental domain (I" may be thought of in intrinsic terms as the
boundary of a canonical dissection of SZ).

Suppose now that qdz2 is the particular analytic quadratic
differential d(,i dgj, dgi being the i-th normal Abelian differential
of the first kind on Sz' Then except for the factor 1/27i the

first double integral in 6) is precisely 6!?13" 7rij being the j-th
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period of dgi and &' being the variation obtained by using a in

5) instead of q (Rauch [2]), so that there is this peculiar reci-
procity:
7) 6] = 4rRe 8'7,. + = [ blwdz - wdz).
ij 2 r
On the other hand if ene now assumes that ¢ is a critical
2

map for J(¢) then as one easily sees from 6) (Rauch [3]) adz" is
an everywhere finite analytic quadratic differential and hence a

linear combination Zcijdgidgj of basis differentials (for a non-

hyperelliptic surface); and a similar reasoning now establishes
8) 8J = 47Re Zcijéﬂij + boundary term

for the same variation §, which is the formula mentioned in the

introduction. 9

The detailed discussion of the boundary term and its uses

and implications will not be given here.

w0

New York University
New York, New York
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STABILITY PROBELEMS ON BOUNDARY COMPONENTS

Lieo Sario

1. In my lecture at the Helsinki Colloquium [13] I indicated
a new proof for Radé's theorem that every 2-dimensional manifold
with conformal structure possesses a countable basis of open sets,
I also indicated how extremal and existence problems on Riemann
surfaces can be solved without making use of the countability axiom.
This approach was made possible by the introduction into complex
analysis of directed limits by Ahlfors. Here I shall attack a partic-
ular extremal problem. It can, as a consequence, be considered
without utilizing countability.

For preparation, we shall need an existence theorem.

Existence questions often amount to the construction of a
harmonic function with given singularities and given behavior near
the boundary. The classical case is that of a closed Riemann sur- g:

R

face w, where a point $ and a punctured neighborhood G of B

5
P
//

. v
Wwith boundary a are given. On 3, a harmonic function s is prez » .

-

-

Scribed with a singularity at B. The problem is to construct a
harmonic function P on W with singularity s at $, i.e., such

that P - s belongs to the family H of harmonic functions h on &

that Possess a harmonic continuation to B. The pf%lem is known
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%
to have a solution if and only if the flux of s vanishes, [ ds e 0.

a

In the general case of an open Riemann surface W of finite
or infinite genus, the point B is replaced by the (ideal) boundary
P of W, the punctured neighborhood G by a neighborhood G of
the boundary B, and the function s by a harmonic function s on
G with an arbitrary behavior as one approaches B. The problem
is that of constructing, on all of W, a harmonic function p which
has the behavior s in G. This means that p - s belongs to the class
H of harmonic functions h on G which, in a sense, have no
singularities on B. More precisely, h has no source on g, i.e.,
its flux vanishes. Furthermore, h 1is to be bounded on 3 by its
extrema on the relative boundary o of 3. We say that h is
associated with its values f on a by an operator L, and we may

write these conditions as follows:

. *
1°. j d(Lf) =0
a -
Zo. minf < Lfﬁ maxf. .
a a

We call a linear operator that satisfies these conditions (and gives a
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unique Lf for any given f) a normal linear operator. The follow-

ing result then is known [8].

THEOREM 1. Given G, L, and s, the condition

j ds =0 is necessary and sufficient for the existence
a

of a harmonic function p on W such that p - s be-

longs to H on 3.

The theorem is quite general, First, G need not be con-
nected but may consist of a (disconnected) boundary neighborhood
Plus some disjoint open sets interior to W. The functions s can
prescribe the behavior in the boundary neighborhood and also some

singularities in the other open sets constituting G. The operator

L may be chosen to be different in different components of 3.

Thus we have obtained a harmonic function s on W with given ,’:‘
) #
Singularities inside W and given behavior as one approaches -

. 4
various parts of the boundary. ‘.

In particular, L. may be chosen to be the operator LO that’
gives, roughly speaking, a vanishing normal derivative to h0 = Lof

on B; or else the operator Ll that gives constant values to

}’1 = Llf on the various boundary components [11]."?%{‘hen the
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corresponding principal functions P, and p, on W give standard

domain functions and mappings onto canonical regions as special
cases of the theorem. Also,linear combinations hpO + kp1 furnish
solutions to a variety of extremal problems concerning Taylor
coefficients, boundary integrals, areas of the maps, and related

functionals [10].

2. To illustrate the use of Theorem 1, let us construct Abel -
ian integrals of the first kind with a prescribed period.

Suppose the period 1 is required along a given l-cycle 6*
on W. We take the conjugate cycle § and divide it into the arcs
5 and 62 by the points Zq and Z,e Then we embed 61 into a
simply-connected region D1C W and set Gl = D1 - Yy For a sec-
ond component GZ of G we take any neighborhood of the ideal

boundary B of G. We map D1 conformally onto a disk D1 and

choose

to be the singularity function in Gl' In G2 we simply take 5, % 0.

% *®
The condition [ds (=X [ dsi ) = 0 is then clearly satisfied. The
i
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linear operator L in Gl is chosen to give harmonic functions on

On 3

Gl with harmonic extensions to D 2

1° any L can be used.

Our theorem then provides us with a harmonic p' on W - 61 with
the jump 1 across 61., In a similar manner, by first embedding
5, in a simply-connected region, we obtain a harmonic P" on

W - 6, with the jump 1 across § The summation p' + p"

>
cancels the singularities, and we have the desired integral with
period 1 along 6*.

If, in addition, one chooses 1. for the boundary neighbor-
hood GZ of B to be L0 or Ll’ then p' 4+ p" has finite norm

(Dirichlet integral), and the existence of differentials with finite

norm has been established on arbitrary open Riemann surfaces

(cf. [7]).
%ﬂ'
#
3. After these general remarks we proceed to our actual 2r
Problem, ..

It is well known that the complement of a point y with res-

Pect to the Riemann sphere cannot be conformally mapped onto the

1

Complement of a disk. The reason is, roughly speaking, that an
.:r-"'%i

Infinitesimal disk near Y would be compressed in the radial direc-

Bra;,
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tion, stretched in the circular direction and this would destroy con-
formality. On the other hand, consider a totally disconnected closed
plane point set $ whose complement W with respect to the plane
has finite area. Then we can make use of the relation OS =0

B SD
by Ahlfors and Beurling [2], where OS and O signify the

B SD

classes of Riemann surfaces which do not admit analytic univalent
functions that are bounded or possess a finite Dirichlet integral,
respectively. The identity mapping of W has a finite Dirichlet
integral, and we conclude that W is mapped, by some function SB,
onto a bounded region. After taking inversions in both planes, the
picture looks like this: In the original plane the point at infinity has
become the origin, and the other components accumulate to it with
such density that, even after the inversion, the complementary area

remains finite. In the image plane y has become a circle approached

from the outside by other components, The plausible reasoning in

this case is that the compressing and stretching is now taken care
of by these other components, and an infinitesimal disk in W near
Y can remain undistorted,

This might lead one to believe that such a heavy accumul -

ation of other components is always necessary if y is to be stretched

I-60
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into a continuum. A very simple example shows that this, however,
is not so. Take a circle y' approached from the outside by an
infinite sequence of concentric circles with decreasingly small gaps
on the right. The complementary area W can be mapped onto a
horizontal slit region, and for reasons of symmetry we may choose
the slits on the real axis, proceeding to the right with decreasing
length, Because of the inaccessibility of ', its "image' must
reduce to a single point vy, the accumulation point of the slits,
Here we have a rather '"lonesome! point y which, however, hides
in itself the power of a proper continuum.

The natural question now arises: How can we know whether
a given boundary component y of a region W is always a point,
under all univalent mappings of W? Further, if a continuum is
given, under what circumstances is it always a continuum? And
finally, when is a given component sometimes a point, sometimes

2 continuum ?

1

L -

It seems convenient to use the following suggestive termin- -

ology [12]. A boundary component y is weak, strong or unstable,

according to whether it is always a point, always a continuum, or

SOmetimes a point, sometimes a continuum. The,mroblem is to

II-61 ;

-0



LEO SARIO

determine to which category a given Yy belongs. The problem is

very difficult. I can only report some very modest preliminary

results,

4. We begin by deriving a sufficient condition for Y to be

strong. For this we need an extremal theorem.

Consider-a plane region V bounded by a Jordan curve Yy

and a closed set § encircled by Yy and such that Yy M & is void.

Suppose the origin z = 0 is in V. We are interested in the class
{F} of univalent analytic functions F(z) on V with the normal-
ization F(0) = 0, F'(0) =1 and such that the image under F of Yy

is a circle with radius r(F), say. Denote by Fo(z) the function

with the additional property that the "ifrnage“ & under Fo(z) of

F
o

& has vanishing area and that each component of § is a radial

F
o

slit (or a point). The existence of Fo(z) is uniquely given by
Theorem 1, for loglFo(z)l appears as p if s is chosen to be
loglzl near z = 0, the harmonic measure of Yy with flux 27

near YV’ and identically zero near 6, while L is taken as L1

near YV’ L0 near §.
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We designate the logarithmic area of the image 6F under F

of § by

A=-f log IF(z)[ d arg F(z).
&

Then the following theorem can be established (the proofs of results

reported in this lecture will appear in [14]):

THEOREM 2. The radial slit mapping Fo has the

following extremal property:

max [27 log r(F) + A(F)] = 27 log rO(F).
Fe{F}

One might suggest that since the area A(F) encircled by 6F

appears in the functional to be maximized, a greater value would et
.
. . . . . . #
be obtained by widening the radial slits so as to contain some area. .
‘,;,)../M
But as we do this, the radius r(F) shrinks, and we lose more -7
than we gain. d

5. Before continuing, we wish to make a side remark. The
Tadius r(F) usually varies as F ranges in {F} Mt is of interest

to know for what kinds of & the radius is rigid, i.e. the same for

b T
-~
<
.\
o
o
-
—
<
-
-~
~
-
-
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all F. A complete solution of this problem was found by a student '

of mine, J. Seewerker, and I would like to quote his result here

[16]:

THEOREM 3. W has rigid radius if and only if

1
6 sOAD. {

Here &' is the complement of § with respect to the sphere
and OAD signifies the class of Riemann surfaces that do not possess
non-constant analytic functions with a finite Dirichlet integral [5, 6].
The theorem can be proved as a consequence of Theorem 2, and i

was established by Seewerker using other methods.

6. We return to our problem. A sufficient condition for a
boundary component Yy of a plane region "W to be weak can now
easily be established. We may assume that y 1is the outer contour
if W 1is bounded, or that it contains (or reduces to) the point at
infinity if W is unbounded.

Let V be a subregion of W bounded by a Jordan curve YVC W
and by the subset & of the boundary of W that is encircled by Yy

The idea now is the following. To make sure Y is strong, we try

AR

pVa
"\“.)\\).\.\‘U‘
s\ )\

+

o)
(A 1I-64

BN




STABILITY PROBLEMS ON BOUNDARY COMPONENTS

to give Y its weakest possible representation. If y is a continuum
in this weakest form, it must be so always, and it is strong. The
weakest representation is obtained by pushing y as far as possible
towards the point at infinity, and Theorem 2 tells us this is

achieved for Yy by the mapping FO of V onto a radially slit

v

disk., We set

d = lim :r:(FO
V—W

v)

and state:

THEOREM 4. vy is strong if d < o,

The proof is based on Theorem 2. I suspect the converse

is true as well, i.e., d = » implies vy 1is strong.

-

.,

7. For weak components, somewhat more complete results ’/’?"

o~

-
o

. £
have been obtained. We start with an analogue of Theorem 2, and "~

r
-

denote by F,(z) the function in {F} that maps V into a disk such

\
that the image 6F of & has vanishing area and each component
1
of 6F is a circular slit (or a point).

1 Ak
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THEOREM 5. The circular slit disk mapping Fl(z)
has the extremal property min [27 log r(F) - A] =
Fe {F}
27 log r(Fl).
This result, incidentally, was simultaneously and independ-
ently found, by use of other methods, by H., Wittich.
A reasoning parallel to that in §6 now leads to the following

statement, where

THEOREM 6, vy is weak if ¢ = .

The condition is also necessary. The proof is based on
Theorem 5. It may be of interest to note that the constant ¢ here
is the negative of the logarithm of the capacity of y as defined in
[9]. Theorem 6 could, therefore, also be proved as a consequence
of the equality CY = OSB [1. c.], where CY is the class of Riemann

surfaces for which each boundary component has vanishing capacity.,
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8. Now that we have reduced the question of the weakness
of y to the evaluation of the measure ¢, the question arises to
what extent methods used in other type problems could be employed
here. In [5], a modular criterion was given for OAD' The ana-
logue in the present case is as follows. Suppose {Dn} is a
sequence of disjoint doubly-connected su/bregions of W tending to
a given boundary component in the sense that Dn separates Dn+1

(and y) from a fixed { ¢ W, Map Dn conformally onto a circular

annulus with radii 1 and ,unY (>1).

THEOREM 7. vy is weak if W“ny = o,

The proof was given by a student of mine, N. Savage, in [15].

A number of methods originally developed for the classical

L

type problem were adapted in [5] to the case OAD' It was shown /:
that these methods amounted to the evaluation of the moduli of S

\

T
doubly-connected regions forming certain sequences. Consequently, - ~

-

the same methods can be used in the present case [15].
In Nevanlinna's method of regular parametric disks [4], the
follOWing conditions are imposed. Any two intersecting parametric

A
disks lz | <1 and Izul <1 are to overlap sufficiently, in the
v .

¥
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sense that the intersection meets both disks |z | <1-4d and
v

lzul <1 -d, where d is independent of the disks. Moreover, no

point of W is to belong to more than a fixed number N of the

disks. Suppose the annular regions Dn in the modular criterion

above are replaced by doubly-connected unions of Nevanlinna disks,

Then it can

and that ln is the number of disks constituting Dn'

1
be shown that y is weak if 2 T diverges.
n

In Ahlfors' method of conformal metric [1] one takes a fixed
point £ e W and considers the set S(P) of curves consisting of
points at distance

P from { in a given conformal metric. If

LY(P) is the length of the curve that separates Y from t, then the

d

divergence of j —L—-E(—)- guarantees the weakness of Y.

The criterion has the following corollary, 2 counterpart of

Laasonen's parabolicity criterion [3]. Using the universal cover-

ing surface w>® of W, one uniformizes W by mapping w* con-

formally onto the disk lwl < 1. Take the fundamental polygon BO
that contains w =0, bounded by an infinite number of circular arcs

orthogonal to \w\ - 1. The intersection of \wl =r (<1) and B

consists of a finite set of arcs, corresponding to S(F) of the above
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d
test if the hyperbolic metric dP = —-J—WJE is used. Let £ (r) be
1-|w| Y
the Euclidean length of those arcs that separate y from w = 0,

1 dr
£ (r)
Y

Then vy is weak if

= 00,

The above tests are valid for arbitrary Riemann surfaces,
Now suppose W 1is a planar covering surface of the complex z-plane
with a finite number of traces 2 of branch points, Draw a
Jordan curve C through the z, The counterpart of C on the
sheets of W decomposes each sheet into two '"half sheets!, Their
interconnections can be described by a topological tree, which
separates the z-plane into disjoint regions corresponding to the
various boundary components. Take a nested sequence of sub-
regions and count the numbers 6ny of knots on their boundaries,

A counterpart of Wittich's parabolicity test [17] is as follows: the
% diVergence of Z}llﬁnY is a sufficient condition for vy to be weak.

Suppose now W is a plane region. Take a sequence of dis-

joint doubly—connected regions En C W such that En separates .

’

En-l from vy. Let dn denote the (minimal) distance between the

! two boundary components Y, and lex of En. Let Ln signify the
nfimum of the (Euclidean) lengths of rectifiable cutyes a separ-

ating Y, and Y1'1 such that the distance from a to Y, U Y;l is

¥
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>d /2. The "relative width" of E is denoted by p_=d /L_ [5].
— n n n n " n
¥ z Bn = o0, then vy is weak.

Finally, we mention an application of the method of Ahlfors
and Nevanlinna [4] that makes use of square nets. Given W and vy
as above, cover the plane by a net of squares with sides Z_n. The
subset of closed squares that meet B decomposes into disjoint com-

ponents, and we count the number kn of squares in the component

that contains y. Then Yy is weak if El/kn = o0,

9. In this fashion we have various ways of getting inform-
ation on strong or weak components Y. Regarding the third prob-
lem, instability of y, I have so far no results to report,

That the problem of the nature of a boundary component is
difficult is not so surprising, when one realizes that the classical

type problem of a simply-connected region is a special case of our

"problem; even in this simple case the solution, in spite of efforts of

analysts during several decades, is not known.

University of California
Los Angeles, California
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APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS

J. L. Walsh

Approximation of a given function of a complex variable by
simpler functions as in the Taylor development, is important both
as a tool for theoretical investigations and for numerical analysis,
These simpler functions may be polynomials or rational functions,
or merely functions bounded in a certain region. Results established
in recent years have a certain precision and also a wide range of
applicability -- indeed some of these are of significance whenever a
sequence of functions analytic and bounded in a region converges in

a closed subregion,

As a first example we cite that of the Taylor development [3].

-
Ld

¥

If a function £(z) is analytic in a circle |z] < p but not analytic 4

throughout any larger concentric circle, we have (Cauchy-Hadamard)“}?“
. -~
.

e

- 2
(1) f(z)=a0+a1z+a2z + oo, ]zl<P, "’
(2) lim sup |a [1/n=l/'o.
n
n—>00
If we choose 1< F< R, we have By
W
F
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(3) lim sup [max If(z) - sn(z)], ]z] El]l/n = l/f .

n n
s (z)Ta +az+... +a z .
n o 1 n
That the first member of equation (3) is not greater than the
second member follows from (2) as a matter of simple algebraic
inequalities, and the strong inequality would contradict (2),

n
If we set lanl iA/'Dl, 1< f’l<P, we have

2

n, n
(4) [max Isn(z)l, lzliR]f_Mn—AlR /’)1
whence from (3), denoting by E the set |z | <1,

(5) lim sup [max |£(z) - Sn(z)l, Z on E]I/log Mn

n—>c0
< exp[-log P/(log R - log Pl)]'

The functions sn(z) depend on a sequence n =1, 2,... rather

than on a continuous parameter, but if we introduce the notation

fM(z) = sn(z), Mn <M< Mn+1’

we may write

\
(6) lf,(2)] < M, |z] <R,
lim sup [max ,f(z) - fM(Z), z on E]l/log M
M-

< exp[-log P/(log R - log RIE

II-74
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This last inequality persists if we change notation so that fM(z)
now indicates a function (which exists by the theory of normal fam-
ilies) analytic in |z| < R and satisfying (6), of best approximation

to f(z) on E. Then we have (P —>p)

1/log M

(7)  lim sup[max |f(z) - fM(z)l, z on E] < exp[-log p/(log R - log

M—w

We have established a part of

THEOREM 1. If f(z) is analytic in |z]| < p but not
throughout the interior of any |[z| < P (P' > p), and if
we have 1< P < R, then there exists a set of functions

fM(z) analytic in lzl < R satisfying (6) and

(L/log M)
M

(8) lim sup m
M —>w

exp[-log P/(log R - log P)]:

m

M max[|f(z) - fM(z)], z on EJ.

o a2
A

Conversely, if there exists a family of functions fM(z) ,
analytic in |z] < R satisfying (6) and (8), then f(z) is

analytic throughout |z] <p-

Inequality (7) shows that the first member of (8) is not greater
e

than the second member. A strong inequality here would contradict

the second part of the theorem, to the proof of which we now turn.

n
If we choose the values M =e , n '..-51, 2,..., and set flv[ n

» n
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equation (8) implies

(9) lim sup [max|f(z) - ¢ _(z)|, z on E]l/n
n ~—>00 n

< exp|[-log P/(log R - log P)],
n
(10) [d)n(z)[ <e, lz] <R.
Here we may write

(11) lim sup [maxld)n(z) - ¢n~l(z)l’ lz]| = 1]l/n
n—>oo

< exp[-log P/(log R - log P)],

(12)  lim sup [max|é_(z) - ¢ ()], |z] =RIVP<e.

n —>00

The Hadamard three-circle theorem expresses the fact that
for a function F(z) analytic in an annulus, log[maxlF(z) I ) Iz[ =r]
is a convex function of log r; this conclusion applies also to

lim sup [log max|¢n(z) |, |2| = r] of a sequence of such functions.

From (9) and (10) there follows by (11) and (12)

(13)  lm sup [max|¢ (z) =¢__ (2)], |z] = pll/n <L

n—>000

and if the strong inequality holds in (11) or (12} it also holds in (13),

so the sequence d)n(z) converges uniformly throughout some
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lz] < p, P' > P In any case if we replace |z]| = p in (13) by

[z| = p- ¢ < P, the first member is less than unity, so the sequence
¢n(z) converges uniformly, and by (8) the functions fM(z) approach
f(z) uniformly on E, so f(z) is analytic in ]z] < P This com-

pletes the proof of Theorem l.

I
The question presents itself as to whether 'i‘heorem 1 extends
to approximation on a more general point set E, by functions re-
quired to be analytic and bounded in a more general region D con-

taining E., Here we have [1]

THEOREM 2. Let D be a bounded region whose

boundary C consists of a finite number of mutually dis-

K
joint Jordan curves, and let E with boundary B be a e

b
set consisting of a finite number of closed mutually dis- ';’/

joint Jordan regions interior to D. Let u(z) be the
function harmonic in D - E, continuous in the closure
of D - E, equal to zero and unity on B and C
respectively. Denote by Dcr generically the se

Ty

0<uf{z) <o in D.

o
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Let f(z) be analytic in E + DP, but not throughout any
—— . . .
E + DP, s P P There exists a set of functions fM(z)
defined for every M (> 0) analytic and in modulus not

greater than M in D, such that

my, = max[ |£(z) - fM(z)[, z on E],

(14) lim sup m{L/108 M) _ . -p/(1-p)

M=
Conversely, if there exists a set of functions fM(z)
analytic and in modulus not greater than M in D, such

that (14) is valid, then f(z) is analytic throughout E + D,

P

To prove Theorem 2 we use a sequence of rational functions
whose poles are equally distributed over a level locus of u(z) near
but exterior to D (we may assume C composed of analytic Jordan
curves, so that u(z) can be extended harmonically across C) and
which interpolate to f(z) in points equally distributed over B.

Here equal distribution on the level loci of u(z) is with respect to -
the harmonic function conjugate to u(z). These rational functions
play the role of the sn(z) in Theorem 1, and it can be shown that

the first member of (14) is not greater than the second member. The

equality in (14) and the second part of Theorem 2 are proved by use
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of the two-constant theorem, in precisely the manner in which the

three-circle theorem was used in proving Theorem 1.

From Theorem 2 it follows that if FM(z) is any family of

functions analytic and in modulus not greater than M in D, we

have

(15) lim sup [maxlf(z) - FM(z)l’ 2 on E]l/log MZ e-P/(l_P),
M—=>cw0

This result is obviously of great generality and applies under very

weak hypotheses. Analogues of this result apply to Theorems 3, 4,

and 5 below,
III
Another kind of theorem (Problem a) applies when the ,‘:‘
#
function approximated on E is not analytic on E but has certain ,i
K
~
continuity properties there. We say that a function f(z) analytic s

interior to an analytic Jordan curve B and continuous in the
closure E of B is of class L(p, a) on E, where B is a non-
Negative intgger and 0 < a <1, provided f(z) has a pth derivative
With respect to arc length on B, which satisfies thore a Lipschitz
Condition of order a. Here the fundamental result [4] is (the

Qumbersg Aj are constants)
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THEOREM 3. Let E be the closed interior of an analytic
Jordan curve, and let the bounded region D contain E. If
f(z) is of class L(p,a) on E, then there exist functions

fn(z) analytic in D satisfying

(16) £ (z)] <AR”, 2 in D,

1
(17) |£(z) - fn(z)l iAZ/np+a, z on E,
Conversely, if there exist functions fn(z) analytic in

D satisfying (16) and (17), then f(z) is of class L(p,a)

on E.

If the function f(z) is given of class L(p, a), it can be shown

that the fn(z) may be chosen as polynomials in z of respective
degrees n, and are thus independent of D. If the fn(z) satisfy-
ing (17) are given as polynomials of respective degrees n in =z,
inequality (16) follows automatically by the generalized Bernstein
lemma for polynomials. We omit the details of the proof.
Theorem 3 extends [5] to the case where f(z) is defined
merely on an analytic Jordan curve C, and D may be taken as an

annular region containing C. The existence of the fM(z) analytic
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in D and satisfying (16) and (17) is necessary and sufficient that

f(P)(z) exist on C and satisfy there a Lipschitz condition of

order a.

v
Problem B partakes of the nature of both Problem A (of which
Theorems 1 and 2 are examples) and of Problem a, exemplified by

Theorem 3. Problem f is well illustrated by

THEOREM 4. Let f(z) be analyticin [z] < p(>1
and of class L(p, a) on C: |z]| = p- Let D be the
region ]z] <R (> P). Then there exist functions fn(z)

analytic in D satisfying

18 | (2)] < AR®/p™nP", 2 in D, M
(19) |£(z) - fn(z)l iAl/Pnnp+a, z on E: |z] =1. .

The geometric ratios of Theorems 1 and 2 are here refined,
thanks to the smoothness properties of f(z}) on C.
The usual equation for the remainder of the gaylor series

after n+l terms can be written

Rrag,
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In particular for an arbitrary polynomial qn(z) of degree n (for
which qn(z) itself is the sum of the first n+l terms of the Taylor

development) we have

n+l
z (t)dt
o 4

11

s lz‘<P.

1
s [
27i c

tn+1(t—z)

Addition of these two equations yields

n+l
z [f(t)-q_(t)]dt
(20) f(z) - sn(z) =1 "n

= N f 3 IZ] < o
27i C tn+l(t-z) F

By a result from which Theorem 3 may be proved, a result
concerning approximation by trigonometric polynomials in the real

domain, it follows that qn(z) exist so that we have
(21) |£6) - q ()] < A, /mP*, 4 on c,

s0 (20) yields at once for gz on E

(22) l£) - s (=) ] < &, /PP

In addition to (20) we may write

. zn+2[f(t)—q_n(t)]dt
fz) - s_ (2) T=— | , 2] <p,
n+l 271 n+2 P

C t (t-z)
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whence by (20)

Zn+1[

f(t)—qn(t)]dt

n+2
t

(z) ~s (z)=2a .z =

"ntl n n+l 27

an equation which by virtue of (21) shows

11 +
(23) la_ | <A/ )P

For |z] <R we have by (23)
n k n,_k, k_pt+a
Isn(z)[ <z IakIR SALE (RT/pIET,

whence (18) follows with fn(z) = sn(z), and (19) follows from (22).
The conditions involved in Theorem 4 are relatively
delicate, and the corresponding study in the geometric situation

of Theorem 2 is not easy. One is inclined to use the method of

C4

38
Theorem 2, that of rational functions interpolating to the given #

-
function in points equally distributed on B, having poles in points e

4
1

equally distributed on a le"/el locus of u(z) near C. Such rational ,-
functions exist, and the analogue of (19) follows readily but not the
analogue of (18). Unlike the situation for polynomials, here the

(z)

difference between two approximating rational fun%t‘ions T
R n

+1

and rn(z.) of respective degrees n+l and n is a rational function

Ry
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of degree 2n+l, and (18) does not follow. If we use not equi-
distribution of points on B and C but uniform distribution {(say
ing

the distribution of points e on the unit circumference, where

¢ /27 is irrational), then r _{z) - rn(z) rcemains of degree n+l

n+l .
but the asymptotic properties of the uniformly distributed points
seem not to yield (1?), and indeed it scems that no distribution of
points on B and C may exist yielding (1€) and (19) simultaneously.
This difficulty can however, be avoided, by (i) introducing [8]
a new canonical map for multiply connected regions, and (ii) design-
ing [7] 2 new series of interpolation of rational functions pertaining
to the new canonical region, rational functions whosec zcros {points
of interpolation) are distributed among only a finite number of points
and whose poles are likewise so distributed. This new serics, a

broad generalization of Taylor's series, enables us to treat the

delicate properties required. The new theorcm [9] is

THEOREM 5. Let D be a bounded rcgion of the
z-plane whose boundary consists of mutually disjoint

analytic Jordan curves B ,B

IR

.,B, C,C C
1 u

1 2: vy l/’
and let E(z) be the function harmonic in D, continuous in

the closurc of D, and equal to zero and unity on B = ¥ B,
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and C = ZCj respectively. For every o, 0< o <1, let
1"0 denote the locus U(z) = o in D, and let D(j denote
the subregion 0 < ﬁ(z) < o of D, whose boundary is
B+T.
o

If T" has no multiple points, and if the function f(z)
is analytic on D plus the closed interiors of the Bj,
and is of class L{p, a), 0<a <1, on I', then there

exist functions fn(z) analytic in D plus the closed

interiors of the Bj such that
(24) |£(z) - £_(2)] iAle(—nP/T) nP* 2 on B,
(25) lf (z)] <A Jm-pVT] pra b,

n — 2

where 277 is the total variation along I, of the function

P
conjugate to U(z). }f’
Reciprocally, if f(z) is defined on B, if the functions "}2"'

fn(z) are analytic in D plus the closed interiors of the -
Bj’ and if (24) and (25) are valid for some integer p (> 0)

and 0< a <1, where 7T is arbitrary, then f(z) can be

defined so as to be analytic in D plus the closed interiors

%

of the Bj’ and of class L(p-1, a) on I‘P.

k&'k
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| A class L(p, a) can be defined also for every negative

| integer p and 0<a<]1, namely we say that f(z) is of class

“ I{p, @) on D provided f£(z) is analytic in a one-sided neighbor-

hood of DP interior to DP within which we have ’f(z)] < Ao(f-c;')_p_(1
for z on I“G, o< P. With this definition, the two parts of Theorem

5 remain valid with no restriction on the integer p, and 0<a<1,

examples show.

ences to the literature,

paper [9] on the subject.

' Harvard University
Cambridge, Massachusetts
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theorem to the indirect is inherent in the nature of the subject, as

For detailed proofs and for further refinements and refer-

the reader may refer to the most recent
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INDUCED REPRESENTATIONS

Raoul Bott

This is a brief summary of the results contained in [3]. we
are dealing with a complex analogue of the following situation in_the
realm of finite groups: If U is a subgroup of a finite group G,
there is an inducing function I, which converts U-modules into G-
modules. By definition I assigns to the U-module E, a G-module

I-E, consisting of the function f: G —> E subject to the identity:

1, f(gu) = ot f(g) ge G, ue U,

(The group G acts on I - E, via left translations: (g« f)x = f(g_lx).
The module 1. E has a certain duality property with

respect to E, which is expressed by the Frobenius identity:

2. HomG(W, I.E) = HomU(W, E),

valid for a G-module W, and a U-module E.
This entire construction, as well as the formula 2, have the
following extended analogue in the realm of complex analytic groups.
Assume that U and G are complex-analytic Lie-groups, and
that U is closedin G. Also let E be a holomorphic U-module,
Let GXUE denote the vector-bundle over G/U defined by E, and

b
finally let H (G/U; SE) be the cohomology module of G/U with

II-88
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coefficients in the sheaf of local analytic sections of SXUE. Then
H*(G/U; SE) is in a natural way a G-module (induced by the left

translations of G on GxUE.) The correspondence E ~—> qu(G/U; SE)

is the desired analogue of 1. Indeed HO(S/U; SE) can alternately

~

be described as the module of holomorphic maps f: G —> E, subject

to 1. Suppose now that:

7~

a. G is semi-simple, 7r0(G) =7 (G/U)=0

1

b. G/U is compact.
THEOREM I. Under these conditions

3, Hom, (W, H(G/U, SE)) = H (v, u N ¥, Hom(W, E)).

(Here W is a holomorphic G-module, while u denotes the Lie-

-

algebra of U. The bar denotes complex conjugation with respect |,

to a maximal compact subgroup of G.) o

In dimension zero, 3. gives a precise analogue of I: L
4. Hom (W, H(3/U, SE)) = Hom (W, E).
[ |

and this formula in turn yields a theorem of Borel.;%/'eil rather directly

[2].
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Other consequences of 3, are:

5. The Euler number x(G/U; SE) depends only on the
C® structure of GXUE. In particular if the usual Euler
number for G/U vanishes, then also x(G/U; SE) = 0
for any holomorphic U-module E. (Here

x(3/U; SE) = Z‘,(-l)i dim Hi(G/U; SE}.)

When x(G/U) # 0, the manifold G/U is known to be a pro-
jective algebraic variety. In that case x(G/U; SE) has been com-
puted by Borel-Hirzebruch [1]. Their answer led them to a conjecture

which is confirmed by the following theorem:

THEOREM II. Let G/U be algebraic, Then if E is

e

an irreducible U-module, H’P(C}/U; SE) is either an

irreducible G-module, or the zero-module.

(For a detailed formula in terms of the maximal weights of E see
(3].)

This theorem in dimension 0 (i.e. for HO(G/U; SE)) is
precisely the result of Borel-Weil alluded to earlier.

It is not difficult to see that Theorems I and II together imply

that H'F(G/U; SE) is finitely computable in general, even in the case
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when G/U 1is not algebraic.

As an example of an explicit computation we may cite the

following:

THEOREM III. Let X be a compact homozeneous

Kaehler manifold, and let 6 be the analytic tangent-bundle

of X. Then H'(X;S0) =0 for i> 1.

In view of the results of Froelicher-Nijenhuis, the vanishing

of H (X; SO0) then implies that the analytic structure of all such

manifolds is locally rizid.

[4]
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CHARACTERISTIC NUMBERS OF HOMOGENEOUS DOMAINS

t

F. Hirzebruch

The bounded homogeneous symmetric domains were classif-
ied by E. Cartan [2]. With each domain X of this type one has to
consider a certain algebraic manifold X' which is a compact homo-
geneous hermitian symmetric space. X is imbeddable in X' as
open subset such that each automorphism of X can be extended to
an automorphism of X', The paper [1] gives methods for the cal-
culation of the Chern numbers of X' and in [4] it was proved that X
and X' are proportional with respect to Chern numbers. Here ]
shall review some of the results of [1] and [4] and give some applica-
tions, in particular an explicit formula for the Euler number of a
symplectic manifold in the sense of Siegel [5]. It was stated in
Siegel [5] at the end of section 18 that such an explicit formula was
still missing.

I refer to [1] and [4] for details and more references to the

literature.

1. Let X be a complex manifold which is complex-

analytically homeomorphic to a bounded homogeneous symmetric

domain in Crn and let

II-92
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K(z,Z)dzld?dzzclz_Z ... dz (X = (-1)""K)

1 md;;
be an invariant real volume element of X, written in local coordin-
ates. There exists one (Bergman's kernel function). "Invariant"
always means invariant with respect to the group of all automorphisms
of X. All products of differential forms are here and always taken in
the sense of exterior calculus, except in the case of a metric form

2

ds .

The Bergman metric of X is given by

2
ds2 =X 9 log K (dz dz_) .
. 0z _ 0Oz a B
- 7%a %%

2
ds  is independent of the invariant volume element; it actually
depends only on X as homogeneous complex manifold and has nothing
to do with an imbedding of X in c™.

- . . . ” . I3 . ?“
The Bergman metric is an invariant k3hlerian metric and its y

Sl

¢/

Curvature tensor is an invariant form of type (1,1} on X with ;’

&
+

coefficients in the complex vector bundle T @ T* where T is the ;
tangential complex vector bundle of X, Liocally the curvature tehsor
Can be represented as a matrix (Qrs) of (1,1)-forms. We introduce

on X the (total) Chern form
Ay

_ _ 1
c—1+c1+... +cm_det(8rs -5 Qrs).

4
L3
1I-.93
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¢ is an invariant closed real form of mixed degree on X and
) is an invariant closed real form of type (k,k) on X.

To any Kdhlerian metric

dsZ=Zg_(dz dz
ap ap ° F

)

there is associated the closed real (1,1)-form

m

and is the real volume element belonging to the Riemannian

2
metric ds .

For the Bergman metric on X we have

W
(1) C1=—'—7T-.

For any partition (}) = (7\1, e Xr) of m the form

c(x) = cxlcxz. - cl is an invariant form of type (m,m) on X and
r o™
thus a real multiple of the (invariant) volume element ey of the

Bergman metric. We write

m
&)

-— - -m P
= (-m) d()\) m!

(2) @A)

If A is a discontinuous group of automorphisms of X which
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has no fixed points and for which X// is compact, then X/[fy is
a non-singular algebraic manifold whose characteristic numbers of

Chern are given by the formula

cm[X/A] = (-m) ML - V(X/A)

A

where V(X//\) is the volume of X//\ with respect to the Bergman

metric. In particular, we have for the Euler number of X//
-m
E(X/A) = (-1 d_-VX/D).

We have written here dm instead of d

(m)’

It is our intention to give a method for the calculation of the

numbers d,.,. This was essentially done in [4]. But we will give

N

here some more explicit results, particularly for the number dm

}l’
A

hd . - 3 /
irreducible bounded homogeneous symmetric domain. Then X can ¢

2. From now on we assume that X 1is equivalent to an

s
be considered in a canonical fashion as open subset of a homogenedus

algebraic variety X' = G/U belonging to one of the following types:

1. U(p+q) / U(p)XU(q) ity
II1. SO(2n)/U(n)
H
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1 k2. Ar J

The Euler number of X!

CHARACTERISTIC NUMBERS OF HOMOGENEOUS DOMA.INS

111, Sp(n}/U(n)
IV, SO(n+2) / SO(n)XSO(2)
V. E, / Spin(10)XT"
1
VI. E7 / E6XT

By the proportionality theorem of [4] we get using (1)
m

3 d., = m! X! X'

) =™ X e R

We see that d is a rational number. For the calculation of d

A)

one has to calculate the Chern numbers c(»[X'] and clm[X'] of

X'. To avoid confusion note that in the expression C(Z)[Xl]

th

Chern class of X' which is an element of HZJ(X' VAR

In particular we have

(4) d_ =m! E(X' )/clm[X' ]

a method for the calculation of clm[X' 1.

3. Let Y = G/U be an algebraic manifold of one of the types

I.-VI. and let m be the complex dimension of Y. The space Y is

I1-96
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simply connected, the group HZ(Y,Z) is infinite cyclic. Let g be
that generator of HZ(Y, Z) which is positive in the sense of Kodaira.
Let D be a divisor of Y with characteristic class g. The divisor
D is uniquely determined up to linear equivalence. The complete
linear system ]rD[ induces for r >1 an imbedding of Y in the

projective space PN (C) where
r

N_ =dim|rD] .
r
The degree v, of this imbedding is given by
v =r ey with v = g [Y].

We have Vi=V and we put Nl =N, and v is the degree of the im-

bedding of Y in P (C) induced by ID]|.
As well known
N +1
r

(5) lim = .
r—>Q0 r

m m., .

The theorem of Riemann-Roch shows [1] that N_+1 equals the degree
of a certain irreducible representation (//r of G. The highest
weight of ¢ equals rg where g is the highest weight of ¥,

Sng
Take all positive roots of G (with respect to some lexico-

graphic order) and let bl’ cee ,bm be those positive roots of G
¥
~
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which do not belong to U. Assume that the notations are such that

bl is the (unique) positive simple root of G among the b.,. Then

E is the weight characterised by

A

Z(E: bl) = (bl: bl) s

(g,9) = 0 for all positive simple roots ¢ of G
different from bl'
Let a be the sum of all positive roots of G and put
m
b= X b,
j=1
The following formula can be obtained by using known formulas of
representation theory (compare [1], [4]) and observing that, when
expressing bj as linear combination of positive simple roots, the

coefficient of b, equals 1.

1
m (a,b, )+ r(b,,b)
N +1=1]] K L L
' k=1 (2, by )
We obtain by (5)
(b, b )™
m 1’71
(6) v=g [Y]=§"*——‘ .
(a,b, )
k=1 k

I1-98
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The first Chern class of Y is given by the weight b, see [1]. This
yields, since b is an integral multiple of g,

Z(b,bl)

(7) °1(Y) = W' g

Thus we have using (6)

m! 27 (b, bl)m

m
®) Y] =

The formula (6) can be put in an especially convenient form
if G is equally laced, i.e. all simple roots of G have equal
length, For a positive root w let u(w) be the sum of coefficients
of w in its expression as linear combination of positive simple
roots. Taking into account that (a,¢) = (¢,¢) for a positive simple

root ¢, we get

m #
(9) v=m!f [ uby) e
k=1 e
r("-
and also «
_[rp[ u(bk) +1
(10) N.+1=N+1= —_—
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4. As examples let us consider the type III and the exceptional

types V and VI,

II1. Y = Sp(n)/ U(n)

dimY=m=-@

n 1
v = me.'/ T G+5) = 2™me T (é{T)'
1<i<j<n k=1 )

¢(Y) = (ntl)g, E(Y) = 2"

A Y=E / Spin(10) XT"

dim Y =m =16
E6 is equally laced. The 16 integers u(bj) are

1,2,3,4,4,5,5,6,6,7,7,8,8,9,10,11

Thus by (9) and (10)
v = 78, N = 26

Y = E6 / Spin(lO)XT1 is an algebraic variety of degree 78 in P26(C)'

Its Euler number is 27. By (7) one can obtain cl(Y) = l2g,

1

VI Y=E7/EXT

6
dim Y =m = 27

II-100
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E., is equally laced. The 27 integers u(bj) are

7

1,2,3,4,5,5,6,6,7,7,8,8,9, 9,9,10,10,11,11,12,12,13,13, 14,15, 16,17,
Thus by (9) and (10)
v = 13110, N = 55,

Y=E, / E6><Tl is an algebraic variety of degree 13110 in P__(C).

55
Its Euler number is 56, By (7) one can obtain that cl(Y) = 18g.

The values for v and N in the cases V, VI are mentioned in

E. Cartan [3] p. 160 and p. 1255 respectively.

5. We return now to the calculation of the numbers d of

Q)

a complex manifold X equivalent to a bounded homogeneous symmetric

domain. This problem is in principle solved by formula (3), since the

*‘
A

«,;‘y'f
Plicit formulas of sections 3 and 4 and the known values of the Euler e

humber of X' enable us by formula (4) to calculate the number dm ’

Chern numbers of X' can be calculated by methods of [1]. The ex-

of X. Here we carry through the calculations only for the case
Where X' belongs to type III, i.e. X is equivalent to Siegel's
generalized upper half-plane [5]. The dimension of+& and X'

€quals m = I—l-(-nZLll . We obtain by formula (4) and section 4

II-101
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-=n(n-1) n ,
a 4 =2 2 (o) T TT (Z—iﬁ)— (type III).

k=1

Siegel defines his upper half-plane X as the space of all symmetric

nXn complex matrices z with the property that the imaginary part

N
of z is positive definite. Put
z =x+ iy

and let X o be the coefficients of x and 'S;rs those of y_l. Then

Siegel introduces the invariant volume element
12 =
(12) Vg =1 Tr (dxrsdyrs) !

the sign chosen in such a way that Vg is a positive multiple of the

m
Bergman volume element % of X. One can prove that
m ! (n-1) m
(13) P N X Vi
m! 2m S°

2

By (2), (11), (13) we get the following theorem:

THEOREM. Let X be Siegel's generalized upper

n(n+l)

half plane (dim X = m = ). Let v_ be Siegel's

S
volume element (12). Then the Chern-Euler form c¢

of X 1is given by the formula

1I-102
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c = (-m m..’n. Vg where

-2m—r (2k)!
7 =2 Tr 1 *
n k=1 k!

For the Euler number of a compact ""symplectic'" manifold
M, i.e. if M is a complex manifold whose universal cover-
ing is Siegel's upper half plane X and M is of the form

X/A, we get

(14) E(M) = (-w)'m.yn- v, .

E—(—ELI) and V_ 1is the volume of M

(M has dimension m = > S

in the sense of Siegel (12)).

We have

1 3
Y770 Y=g V3=

lad

¢
&

The preceding theorem makes Siegel's theorem 5 of [5] more ;
P

explicit. Siegel writes <, instead of 7. He calculated the 7

for n < 3 but obtained for :73 the value i% . It should still be ’

2
checked carefully whether or not some power of 2 crept erron-

eously into the preceding calculations. oy

The question remains whether (14) is true for open

4
&

11-103
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"symplectic' manifolds with finite volume. If so, one would get for

example explicit formulae for the Euler number of X/[—n(p) where

X 1is Siegel's upper half plane and [_ (P) the congruence subgroup
n

(p prime # 2) of the modular group rn' This formula for the

Euler number would involve Bernoulli numbers (see [5], section 45),

1]

[2]

[3]

(4]

[5]
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AUTOMORPHIC FORMS IN HALF-SPACES

M. Koecher

In this note a short survey shall be given of a theory of auto-
morphic forms in half-spaces, where in the following a half-space
will be defined as a suitable generalization of the upper half of the
complex plane. One tries in this way to develop a unified theory of
automorphic forms of several variables, which are of interest from
the standpoint of the theory of numbers, i.e. of the modular forms
of Hilbert and Siegel and of the Hermitean modular forms. The
investigations are based on the concept of the domain of positivity,
recently investigated by the author (cp. 'Positivititsbereiche im
Rn”, American Journal of Mathematics, 79, Vol. 3, 1957). Only
those discontinuous subgroups of the automorphism group of the

half-spaces will be considered which have a non-compact funda-

mental domain. For clarification of these concepts it is recommend-~ 4

. .
ed that one go back to the above mentioned examples, e

-

-

1. Let Y be an open subset of R" with the following

Properties:

(P.1) Given two arbitrary points a and b of Y,®
a'b >0,

4

"
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(P.2) I x is not contained in Y, then there is an a ¢ Y for

which a' x < 0.

Points of R" are represented here by columns of n elements, a'
means the transposed row of a and Y the closure of Y. In the
following any open subset of R" with these two properties is called

a domain of positivity. One easily proves that any domain of

positivity is convex and maximal, i.e. there is no domain of posi-
tivity properly containing it. Further, if a and b arein Y, so
is aa + Bb for all positive a and {, and the intersection of Y
and -Y is the null vector. One immediately sees that the domains
defined in this way are also domains of positivity in the sense of
N. Bourbaki (cf. Intégration, Chap. II, §1, No. 2).

Any domain of positivity induces a semi-ordering in RrR" by

the definition
x>y if x—ys_Y— (and x>y if x ~ye Y).

This semi-ordering is Archimedean in our case, i.e. for every a

in Y and every x in R” there is some A > 0 so that Xa > x.

2. By 3(Y) we denote in the following the (linear) auto-
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morphism group of Y, i.e. the group of real non-singular matrices
W of n-th order such that y —> Wy induces a one-one mapping

of Y onto itself. One immediately sees that, if W belongs to
5(Y), so does W',

A function defined on Y we will call a _n_o_r_r_n__of Y, if it has

the following two properties

(N.1) £(y) is continuous and positive on Y,

(N.2) £(Wy) = ||W]|f(y) for any We Z(Y),

where ||W|| denotes the absolute value of the determinant |W]|.

THEOREM 1: For every domain of positivity Y there
exists a (real-analytic) norm N(y). The element of

arc length formed by means of N(y)

ds” = - —1 #
s I dy, dy, 373y og N(y)
Kk, £ k72 o
-~

is positive definite and invariant under the mappings <.

y —> Wy, where W belongs to X(Y).

s
Furthermore, there is always an involution y — vy of Y with

the properties: "

1I-107 "
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EE 1 =

) =y, NNy =1, (Wwy) =wr Ty

2
for every W e 2(Y), and ds is invariant even under the mapping

oo
K

y—Yy.

3, Let us suppose now that Y is homogeneous, i.e. the
effect of Z(Y) on Y is transitive. It is easily seen that the norm
of Y is then uniquely determined except for a constant factor,
2(Y) can be looked upon as the group of "units'" of N(y) in the

following sense:

THEOREM 2: A real non-singular matrix W belongs
to X(Y) if and only if WY MY # # and N(Wy) = | | W] |N(y)

for all ye WY Y.

Because of Theorem 1, Y can be looked upon as a Riemann-
ian manifold. It can then be proved that every homogeneocus domain
of positivity is complete and that to any two points of Y there
exists exactly one geodesic connecting them, Furthermore it can

o
s

be deduced easily from the existence of the involution y —> y’ .

that a homogeneous domain of positivity is always a weakly-symmetric

space in the sense of A. Selberg.

I1-108
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4. It is a very important, and in the applications of the
theory, often discussed problem, to construct a simple funda-
mental domain in Y for a given discontinuous subgroup I' of
2Y). In the present case one succeeds by the following construc-

tion: If for ae¢ Y we define

F(LLa)={y:ye Y, a'y<a'Wy for every We I'}

then the following theorem holds:

THEOREM 3: If W'a £a for every W e I', then
F(I, a) is a convex fundamental domain of I. Every
compact subset K of Y has non-void intersections

with only a finite number of images of F(I, a) gener-

ated by mappings of I, ,:;
gfj*
If F isa fundamental domain of a discontinuous subgroup 7
of Z(Y) we denote by F| the set of points y of F satisfying -

the relation N(y) <1. The groups for which F, has a finite

Euclidean volume are of special interest.
—~

To any lattice G of Rn, one can easily com8truct a discon-

tinuous subgroup of 3(Y). Namely, if we denote by 2(3) the group
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of non-singular matrices W mapping G onto itself, one easily

verifies that
2(Y,G) = ()M 2(Q)

is a discontinuous subgroup of X(Y). A lattice shall be called an

admissible one, if the following two properties hold:

(L..1) There exists a number Y > 0 such that N(a) >y
P
forall ae YNNG .
(L.2) X(Y,3G) has a fundamental domain F in Y for which Fl

is of finite volume.

ok
G denotes the complementary lattice to G, i.e. the set of points

b such that a'b is an integer for any ae G.

5. We now come to the definition of the concept "half-space'’.

. . n .
For this purpose we consider subsets Z of C » consisting for a

given homogeneous domain of positivity Y Rn, of all points
. n
z=x+1y, xe R, ye Y.

We also write

II-110
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Z =X +iY, X =R"

By XZ(Z) we denote the group of (holomorphic) autoinorphisms of
7Z. A slight generalization of S. Bergman's results shows that Z
has a linear element invariant under X(Z) and therefore also an
invariant metric in the sense of Bergman. The corresponding

invariant volume element has the form

where N(y) is the norm of Y (uniquely determined up to a
constant factor).
By the special form of Z one immediately recognizes

that the mappings

1) z —> Wz +t, We Z{Y), teRn,

are always automorphisms of Z. But there is still one more auto-

morphism z — w(z), defining an involution of Z and such that

w(iy) = iy*. All the known examples for Z further the presump-’

tion that X(Z) is generated by the mappings (1) and this involution.
In the following, a set Z = X +1iY shall beﬁﬁ%alled a half-

Space, if Y is a homogeneous domain of positivity and every map-

¥
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ping z —> a(z) of X(Z) is of the form a(z) = Wz + t, provided

that the functional determinant

| 9a(z) |
[ 9z |

is constant in Z. Here, too, the possibility of deducing this last

postulate is to be presumed.

6. If I' is a subgroup of X(Z), we denote by GF the set

of points t g R" for which the mapping z —> 7(z) = z + t belongs
to I. Furthermore let QI‘ be the set of real non-singular

matrices W of n-th order for which there exists a CW in Rn such

that 7(z) = Wz + ¢ belongs to I. Evidently G, is an additive

\ r

group, being discrete in R" in the case where I' is discontinuous.
We call I' an admissible subgroup of Z(Z), if the following pro-

perties hold:

(S.1) T is discontinuous in Z,
(S. 2) GI‘ is an admissible lattice in Rn,

(S.3) The index of QP in Z(Y, '31,.) is finite,

(S.4) For any a in Z, every sequence a in I' with the
v

property

II-112
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N(Im al(a)) < N(Im az(a)) <o ,
ends after a finite number of steps.

The fact that Q. is a subgroup of Z(Y, GF) can be inferred from

r
(S. 2) alone. (S.4) means that the fundamental domain of T" in Z
is certainly not compact. Those groups which concern applica-
tions to the theory of numbers are especially important, and they
certainly have not yet been sufficiently investigated from the stand-
point of the theory of holomorphic functions. Postulate (5.2) in a
certain sense describes the form of the fundamental domain of T"
in the neighborhood of the ideal point. For every admissible sub-
group of }Z) a simple fundamental domain exists,

A substitution o ¢ (Z) shall be called a cusp of T, if

-1
¢ T'.c is an admissible subgroup of ¥£(Z). In generalizing the s

most important discontinuous groups in several variables, we Wt

calla subgroup I' of X(Z) a modular group of Z, if there exists an R

s

ae Y and a finite number of cusps crj e I' such that for every
%2 e Z there is an a belonging to the complex

() cr-l- T -y
v

v

for which Im a(z) > a. For every modular group the invariant

(3
w

»
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volume of a measurable fundamental domain is finite, and if I is

a modular group each subgroup of I' of finite index is also a

modular group.

7. For every ace XL(Z) the functional determinant is differ-

ent from zero in Z. Consequently

laa(z)l
log, 7z I

can be defined as a holomorphic function. For real r, let

l}.
l )

in the case that r is an integer the multiplication formula for

= exp {r log {atg(zz)

| da(z)| "
| 9z |

functional determinants yields

T

(2) {Baﬁ(Z)

I aB(z)|" [3B(z)|T
9z | B(z)| | oz |

| @
We will confine ourselves here to the case of automorphic forms
without multiplier system, and choose for that purpose a real
number r for which (2) is valid without restriction. For any

function f(z) defined in Z and for every a € X(Z) we define

II-114
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dalz)]” .,
aZ l f\G.(Z)).

fla = f(z)]a = i
Because of (2) we find
(£]a)[B = £[(ap)

for a and B e Z(Z).

We call a function £(z) an automorphic form of dimension

-r for a modular group I' of Z, if the following properties hold:

(A.1l) {(z) is holomorphic in Z,

(A.2) f|a=f for every a e I

Such a form will be called an integral form, if in addition the

postulate

(A.3) For every cusp ¢ of I' there exists a . e Y such

s
that f|o is bounded in the domain described by o
.-;‘,/
Vet
Imz>c, ¢
— G .

is satisfied. If also the following postulate is fulfilled, f(z) is

called a cusp form:

-~

(A.4) For every cusp o of I' there exists a cc;? Y so

that
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lim {f(z)|o} = 0.

c <y—>0
O'—Y

These postulates are the exact generalizations of the usual ones.

The following theorems can be deduced, among others:

THEOREM 4: If o is a cusp of a modular group T,
then every automorphic form £(z) of I has a Fourier

series, which is absolutely and uniformly convergent in

Z:

fz)|o= T Alfloia) “T*F, G = (G
asGG g I'o

THEOREM 5: An automorphic form f£(z) of a modu-
lar group is an integral (a cusp) form if and only if for every
cusp o of I' and for every a not belonging to Y (to

Y) the coefficients A(f]c;a) are zero,

THEOREM 6: If T is a modular group and r < 0,
then every integral automorphic form of the dimension

-r is identically zero.

Furthermore, some estimations of the Fourier coefficients

of cusp forms can be transferred to the general case. There

II-116
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exists for each cusp form f(z) a constant y depending only on f

such that

| At |o3a)| < vIN(a)]"/2

for all cusps o of I' and every ace Gcr'
The following theorem concerning the number of linearly

independent cusp forms may also be of interest:

THEOREM 7: For any modular group I' the number
of linearly independent cusp forms of dimension -r is

finite,

8. As in the known examples, it is also possible in the

general case to construct automorphic forms by means of

A
Poincaré series. For any modular group I' and an element b
g
<7
% f— ”
be Gl_,m Y we define ¢
* Iaa(z)lr 27ib' a(z) ’
P(].—, b;Z) = X | oz | e

the sum being taken only over a which yield different terms, For
~%
the cases b=0 and be Y one shows that the series are absolutely

and uniformly convergent for r > 2, and for any cusp o of I}
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(3) P(o"l- Ie0,b;z)|o

is an integral automorphic form of I' of dimension -r. If b is

chosen in Y, the Poincaré series (3) is a cusp form. By means

) of a generalization of the Petersson metrization of automorphic

forms, one finally can show that every cusp form of I' can be

. linearly composed of Poincaré series (3).

| 9. Finally, it is shown how the known examples can be

H,m formulated in this theory:

HILBERT'S MODULAR SROUP: As domain of posi-
i'é] tivity Y one chooses the set of points y ¢ rR" having posi-
I

tive components only. Then Z = X +iY is a half-space

l”‘ and Hilbert's modular group of a totally-real algebraic
number field of dimension n is a modular group in the

i sense of the above definition.

i SIEGEL'S MODULAR GROUP: If A = (a, ,) is a real syn-

k4

u”" metric matrix of order m, one puts n = m(m+l)/2 and

associates the vector
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- ,a

| B—
al =(ajpay .2 2,

with this matrix. If B is another such matrix one

easily verifies
a'b = trace (AB)

and one immediately sees that the set of point. a for
which the matrix A is positive definite is a homo-
geneous domain of positivity in R®. Z =X +1iY then

is the so-called generalized upper half-plane and the

modular group of degree m is a modular group in the

sense of the above definition.

In an exactly analogous way the hermitian modular group

over an imaginary-quadratic number field can be looked upon as il
Pl

a modular group in a suitable half-space. Furthermore one "7“
=

recognizes that the hitherto only scarcely investigated mixed cases, 7

€. g. the modular group of degree m over a totally-real algebraic
humber field, are special cases of this general theory. That fact

Seems to justify, in a certain sense, the richness of the concept-

-~ %}
ual scheme of the theory.

University of Mtnster
Mtnster, Germany
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THE FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS
BELONGING TO A CLASS OF REAL ZONAL
HOROCYCLIC GROUPS

Joseph Lehner

§1. R. A. Rankin [1] has recently coined the term "horocyclic
group' as an English equivalent of the French "Fuchsian group of
the first kind" and the German "Grenzkreisgruppe'. He calls the
groups ''real' if all substitutions of the group preserve the real
axis, and '"'zonal" if the group contains translations. In this paper,
we shall refer to real zonal horocyclic groups as "H-groups'", An

H-group, then, iz a group I' of linear transformations of a complex

variable such that

(a) I' is discontinuous in the upper half-plane but is not

discontinuous at any point of the real axis.

(b) every transformation of I' preserves the upper half-

plane.

(c) I contains parabolic substitutions with fixed point oo,

The main object of this paper is to determine the expansions
of the Fourier coefficients of automorphic forms on H-groups of a
certain class by the use of the circle method. The circle method

has been employed by Radernacher and Zuckerman ([2]-[5]) when

1I-120
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the H-group was the modular group or one of its subgroups. Here we

develop the circle method for a class of H-groups defined by the

following restriction: A fundamental region of the H-group shall

have exactly one parabolic cusp. (This implies that the funda-

mental region has a finite number of sides ([7], Th. 16, p. 75).) As
a consequence of this condition, there exists a number h > 0 such
that the fundamental region with cusp at « does not extend below
the horizontal line at height h above the real axis.

The circle method is elementary in character, using only
Cauchy's theorem and a careful choice of the path of integration.
Lacking an arithmetic characterization of the parabolic points of the
H-group, such as is available in the case of the modular group, we
use the geometry of the fundamental region for the construction of
the path of integration.

We treat entire automorphic forms of dimension r, i.e.,
analytic functions of a complex variable z, which are regular in

the upper half-plane and satisfy there the functional equation

F(Vz) = €(a,b, c,d)(-i(cz + d)) " F(z), ¢ >0
(1.1) -my

F(Sz) = ezﬂiaF(Z).

- 8 '™
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Here V and S are elements of I' defined in §2, the multipliers ¢
have absolute value 1, r 1is real, Iarg -i{cz + d)l <7 and
0 < a< 1. The second equation implies a Fourier expansion for
-27iaz . . ..

e F(z), in which we assume there are only a finite number
of terms with negative exponents:

2miaz / i 2rimaz/ \
(1. 2) e )‘F(z) = X a_ e .

:-# m

The series converges for Im z > 0.

Our main result is contained in the following

THEOREM. I F(z) is an automorphic form of
dimension r > 0, its Fourier coefficients arn with
m > 0 are given in terms of those with m < 0 by the

formula

U i (r+1)/2
a =21 L a Zc A (m)( )
m -V C,V mta
v=1 ceC
c>0
1/2

/2

1 -a) P ma) P,

where

A, (m)= I & (a,b,c,d) exp{-(2mi eN(v-ala-(mta)d]},

’ de D
c
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and
u
-1 1
a =2r S a ¥ c A (0)2m /) T/ (ra1)
o -v c,v
v=1 ceC
c>0
Here Ir+l is the Bessel function of the first kind with purely

imaginary argument, and C and Dc are defined in §2.
¥ r=0, a_ is given by a finite sum of the same type as
above with 0< c< B “¥m (B = const.) plus an error term

which is bounded as m — .
A remark on forms of dimension r < -2 1is presented in §5.

For a different approach, see Petersson [8].

§2. Let I' be an H-group. The elements of I' may be re-
a b -a -b

pPresented by unimodular matrices V = ( ), -V = ( ), where ¥
c d -c -d A
a, b, ¢, d are real. We may identify the matrices _—_i—_V with the uﬁ

linear transformation Vz = (az + b)/{cz + d). The subgroup of I , A
”~

consisting of all V which preserve o, i.e,, in which ¢ = 0, is.

1

known to be a cyclic group generated by a translation 5 = (0 L

x>0 ([6], 33).
o~y

Because of the discontinuity of I", I is discrete: therec is no

sequence of different V_ ¢ .” which tends to the identity., Let C be

pas
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the set of third coefficients in the elements of I, i.e.,
a b
Cz{xl(X d)eF,for some a,b,d } ;

similarly for A, B,D. Using the discreteness of I, Petersson

{[6], 34) proved that there is no sequence of different c eC
such that c, — 0. Using the same property, we can show that
C is a discrete set.
Let Dc be the set of d ¢ D such that T" contains at
least one matrix of the form (; (i) with 0 < -d < c\. By the argu-
ment used in the proof of the discreteness of C, it follows that the
set of d ¢ D which appear with a given c¢ in elements of T is a
discrete set., This means that for each c ¢ C, Dc is a finite set,
While it is not true that the remaining coefficient sets
(i.e. A, B, D) are necessarily discrete, we can always transform
1

T' so that the transformed group I" = Ll"L-1 has this property and

is still an H-group. For this purpose, we select

/2 -1/2
Y Y &

! L = s where W:(a 6)s:l"a,ndy>0.
: 0 -1/2 Y &
Y
!
’ -1 at+s -1
1 Then LWL ~ =T = ( 1 O) belongs to the transformed group.
Now if V= (* )¢ I then

d

!
’ I1-124
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. . -1 c . -1 . .
TV—(a '), T V—(' .), TV -(d .),
-1, . . -1 -1 .. -1-1. . ¢
VT =( c)’ TV T ~(b..), T 'V T—(. ')

where, e.g., (; :) denotes a matrix with a in the indicated position.
This shows that all coefficient sets are the same: A =B =C =D,
Since C 1is discrete, they all are.

We now normalize the group I as follows. Choose W so
that y > 0 and ]\(] is minimal. Then in the transformed group
(which we now call I), the coefficient sets are all discrete, and if
a coefficient of any element does not vanish, it has absolute value

at least unity.

§3. We now introduce the restriction on 1 stated in §1.
Since I has exactly one equivalence class of parabolic points

¢
P
which, by the definition of an H-group, must contain the point o, w
2
»
we see that all parabolic points of I' are equivalent to . Th-re- ¢

b ld
fore, every parabolic point is of the form -d/c, where V = (ac d)

~

¢ I, In this representation, ¢ and d are unique. For supposec
-d'/ ¢' is the same parabolic point as -d/c, and let V' = (C'I él ).

-1 RS T
V'V ~ preserves « and so is equal to Sm, Vo= ng, from which

it follows that c=c¢', d =d'.

H1-125



FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS

Let z =x +1iy be a complex variable. We choosc a closed
fundamental region (FR) of I' bounded laterally by portions of the
vertical lines x = 0, X and bounded below by arcs of isometric
circles {|cz + d| =1), ¢>0. Let R be the closed rcgion which
includes FR and all its translates by integral multiples of X\
Since |c]| >1 vhen c # 0, it follows that the radii of the isometric

circles (1/ ! c|) do not exceed unity. Hence
(3.1) y > 1 implies z ¢ R.

Alzo, FR does not extend below a horizontal line of height h above

the rcal axis (see §l), so
(3.2) y <h implies z ¢ R.

We shall now describe a path which will be used later for

integration. Let LN be the line segment

-2 -1
(3.3) LN.O§X<)\,y~yo—N h 7,

where N > h_1 is arbitrary. Consider the sets

(3. 4) I(c,d)z{zsLNIVC’dzsR},
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v = (" °). Since L__ is contained in a compact regio
where c,d (c d) N P gion,
it is covered Dy a finite number of fundamental regions. Hence

I{c,d) is empty except for a finite set of (c,d). Denote this set by

M and then we have
(3.5) Ly = \J 1e,a).

The sets I{c,d) do not overlap except possibly at their endpoints,

for no point can be mapped into the interior of R by two Vc 4

with different (c,d).

Now let F(z) be an automorphic form on I' of the type des-

cribed in §l. By Cauchy's theorem

e-Zmo.z/)\F(Z) . e—2w1mz/xdz _ s |

L (c,d)eM I(c,d)

(3.6) a =
m
(the integrands are the same).

On each interval I(c,d), we apply the transformation formula (1.1)
with V = Vc q and in the result we introduce the Fourier series
(1. 2) for F(z'). Setting Vz =z' =x' +iy', we have
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a = h3 e—l j (-i(cz + an’ - . l
{c,d)eM I(c,d)
-1

e—27ri(m+a)z/)\ + 27i(y+a)z' /n

a

When 2z e I(c,d), we have z'e¢ R by (3.4) and so y' >h

by (3.2); also y = Yo by (3.3). Hence,

Z a dus l

N v

y=-p
(3.7) l
) .
- -27ri Zai{yv+a)z’

' 5. 1 ) (-ilca + d))r S 2 e mi{m+a)z /N + Zai{v+a)z /)\dZ ,‘
(c,d)eM  I{c, d) v=0 Y |
= Sl + SZ' 1
[
]
I
I

(3. 8) lcz + d[Z = yo/y’ fN-Zh_Z; y' >h.
With these estimates, we get
-r, Z [—Z7r|rn+a[/NZh2>\] - 27(v+a)h/n
|s,| <o) » [a |e
y=0 " l
Z [Uc,a)], '.

(c,d)

where |I| is the length of I. Now X |I{c,d)| = A. Since the
(c,d)
infinite series converges because h > 0, we have

-r
SZ = O(N 7).

e ———— o——  —

In Sl’ we break up the range of (c,d). Set M = M1 + M,, where

}
|
)
l,
.f
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(3.9) M, = {(c,d) | 0<c<Nh/2}.

Denote the corresponding parts of S1 by T, and TZ' In TZ we

1

still have the estimates (3. 8) and in addition

2 -2 -
(3.10) ¥ _<_yo/c2 y(?; =1/c% y < 4N 2p % . N*h=anl,

If M2 is empty, we have, of course, T_ = 0; otherwise

2
-r M 8riu/hn -r
[T, <o) 2 fa_,le |I(c,d)] = O(N"").
£=1 (c,d)e:M2
Putting these results together, we get
-1, . r
(3.11) a = z € I (-i(cz +d))" -
(c,d)eMl I{c,d)
I . .
-2 -2 -a)z! -
LS a e ri(m+a)z /) Ti(4 (1)z/)\dz + O r)
-
£2=1
’,
&
§4. In order to make further progress, let us study the set ,?;
I{c,d) more closely., When (c,d) ¢ Ml’ ¢ < Nh/2, and Im Vc d[—d/c/{:

. 2 2 -2 -2 2 - P
+ 1YO] = YO/C Yo > 4N h « N h = 4h ! > 1, This shows that .

I(c,d) contains the point -d/c + iyo, and by continuity, contains a
closed interval J(c,d) including that point., The endpoints of

J(C,d) are determined by considering the map of ]:N by VC d;
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this is a circle K which definitely intersects the interior of R and
which leaves R for the first timme at two points. The inverse
images of these two points are the endpoints of J(c,d). If we

therefore write

I{c,d) = J(c,d) + J'(c, d),
then certainly
{4.1) y'< 1l for z ¢ J'(c,d),

for K is definitely below the line y =1 when z ¢ J'(c,d). Also,
(3. 8) holds since z ¢ I(c,d). The sets flc,d), J'(c,d)},
(c,d) ¢ Ml’ are obviously non-overlapping.

We break the sum in (3.11) into two parts, calling U1 the sum

in which the integral is extended over J(c,d) and U2 the sum in

which the path of integration is J'(c,d). For UZ’ we have the
estimate O(N-r), obtained in the same way as the estimate for TZ’
since (4.1) is essentially the same as (3.10) and (3. 8) holds in both

cases. This gives

(4.2) a_= 3 e [ (cifcz +d)t -
m (c,d)eM; J(c,d)
K . ; 1
- a—le-2ﬂ1(m+a)z/)\ - 27i(f~-a)z /)‘dz . O(N_r).,
2=1
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The argument preceding (4.1) has shown incidentally that M1 consists
of all pairs (c,d) in the range 0 < c < Nh/2.
The integrals in (4. 2) must be evaluated in closed form to get

our final result. For this purpose we need precise inequalities

on the length of J(c,d). On J(c,d)
= - ] -0 < 1
z d/c+g+1yo, ec’d_gf_ec’d

The point V[-d/c + 6 47T iyo] has an imaginary part lying between

d

h and 1. This observation leads at once to bounds for 6', @',

namely,

'111'1/2c‘11\1'l <@ " < h"lc'lN'1 .

4, )
(4.3) 2 c,d c,d —

Now these bounds are substantially the same as those for

the usual Farey segments, on the basis of which Rademacher and

-,
«

Zuckerman ([2], 439-441) evaluated the integrals analogous to

those in (4.2). We can use their evaluation in our case also, and -
50 obtain the result of our theorem when r > 0 and m+a > 0. If
m+a=0 (i.e., m =a = 0), we do not follow the approach of [2] but
instead set

a = lim a

m—>0, a—0 mta
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The limit process can be carried out in all the foregoing steps and
leads to the announced result,
When r = 0, we need to retain m 1in our error terms which
-2 . .
then become O(exp cmN ) with a certain constant c. The best
choice is then N = const. ¥m , which gives a bounded error as

m —> oo

§5. In the preceding discussion the positivity (or at least
non-negativity) of r was essential. However, the preceding re-
sults can, in certain cases, be used to yield results for forms of
negative dimension.

. . §

Let F(z) now be a form of dimension r < -2 whose trans-
formation formula and Fourier series are again given by (1.1) and

(1. 2). We construct the function

s
o 7r1(m+a)z/)\, 4 >0, Imz>0,

where the a (for m > 0) are given by our theorem, and rearrange
the series by the Lipschitz formula. The result is a "generalized
Poincaré series'' which can be seen directly to satisfy the trans-
formation formula (1.1). Thus F and 3 are automorphic forms

on [' with the same principal parts and so can differ only by a
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cusp form:

F(z) = G(z) + H(z),
where H wvanishes at «.
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ASYMPTOTIC FORMULAE FOR THE FOURIER COEFFICIENTS
OF MULTIPLICATIVE AUTOMORPHIC FUNCTIONSﬁz

Hans Petersson

1. Let T bea horocyclic group which contains parabolic
substitutions and for which the upper half-plane of the complex
variable 7 =x +1iy (x real, y > 0) forms a maximal domain of dis-
continuity. In earlier papers of the author (see [1], [2]) of the
bibliography at the end of this paper), a summation method was
supplied for Poincaré's series belonging to the group T, the

dimension -2 and to any system of multipliers v, of modulus 1.

2

This method yields explicit linear representations of all automorphic

forms of the same type. It makes use of the fact that Poincaré's
series of dimension -r < -2 are uniformly absolutely convergent
on each closed vertical half-strip contained in y > 0 and therefore
define, if formed by use of suitable multipliers Vo continuous
functions both of 7 and r for y>0 and 2<r < r . The result
of the method consists in the statement that these series tend, as

r —> 2 + 0, to limiting functions which behave as if they were
Poincaré series of dimension -2 converging as in the case of
dimension -r < -2,

Considering this result, one may ask whether the method is

I1-134
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¢
able to contribute to the solution of concrete problems. We investi-
gate multiplicative automorphic forms, belonging, as above, to l_,

-2, v, which are analytic in y > 0 but not integral forms so that each

( of them has a negative order in at least one cusp of the fundamental |
domain. It is shown here that the Fourier coefficients of these forms
satisfy asymptotic formulae of a relatively high exactness. The

relation to the Fourier coefficients of multiplicative automorphic

functions (belonging to T, o0, VZ) is obtained by differentiating the

latter with respect to 7. The formulae may be considered as gen-
eralizations of the Hardy-Ramanujan-Rademacher results on the
classical partition function p(n). As Hecke's summation method

is subject to rather strong restrictions, when applied to multiplicative

modular functions, one has to use these new results in order to

| derive asymptotic formulae of the well known type on partition 4
functions of a certain general character. 2
”~
rsA_
a P g
2, Let [ be the group of real matrices L = £f -
Y &

determinant 1 for which 7 —> L7 = (a7 + B)(YT + 6)_l belongs to

—

I'. Weassume T =w to be a cusp of I. Each cu“% ¢ of I' may

L

be given by ¢ = A_loo where A = is real, |A| =1, A = unit
12

X

2
-
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matrix I if ¢ = . The cyclical group of the transformations of L
with the fixed point { is generated by the transformation with the

"principal matrix" of {:-

1N 1
(2.1) P=A"U A (U)‘ = (0 )1) for real 2, U1 = U)
where N’< = NA denotes a certain positive number; we shall write
N for NI.

Next, if 2<r < R 2 being sufficiently small, we
determine arbitrarily a system of multipliers v, on [ of modulus
1, belonging to the dimension -r, which depends continuously on r
and satisfies the conditions [A, B, C] of [1]; for r = 2, V. coincides

with the preassigned v, We denote by K. = {I, -r, Vr} the
"class' of automorphic forms corresponding to T, -1, Vo by Kz

the linear manifold of the integral forms in Kr vanishing in all

cusps of T. For each cusp { of T we put

(2.2) v_(P) = exp 2rik (r) where 0<k (r)<1 (if 2<r< r )

A

e
b

3
=k
and k (r) A

shall write k(r) for kI(r).

(r) is a continuous function of r in 2<r < ro; we

In order to deal with Poincaré series we may fix the nota-

tion in such a manner that each cusp ¢ of I' is represented by
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only one A and that either any two such cusps, represented by two
of the matrices I, A, B, are incongruent to each other mod T or
the corresponding two matrices coincide. For the matrices
M = AL ¢ AT we define v_(M) = vr(A)cr(r)(A,L)vr(L) where v_(A)
denotes, if A #1, an arbitrary continuous function of r in
2<r< T throughout of modulus 1. Now, v being an integer, we

introduce the Poincaré series associated to the cusp { of I' by

sk -1 -
(2. 3) G(T, A, K, v +k (1)) = Z v (M7 +m) ¥
MeZ(A, D
*
k
+ exp 27i —‘I—-P—-—,,ﬁM'T
N
where r>2 and M = runs over a complete system
m, m,

Z(A, I) of matrices of AI' with different second rows (ml, 2).

The powers used here are principal values (-7 < arg < +7). Every

3 represents an automorphic form of Kr’ analytic in y > 0. For
v+ k*(r) > 0, G belongs to K:. Evidently, every G 1is a continyous
function both of 7 and r for y>0, 2<r < T In the following we

consider only the case
%
(2.4)  v+k (2)<0, fee. v<-1 if 0<K (2) <15 y< -2

if k(2) = 1.

w,
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Applying the results of [3] and assuming 2 <r < r, as well

as (2. 4), we obtain

THEOREM L. (a) 3(7, A, K_, Kk (r)) vanishes

in all cusps of I" which are not congruent to

¢ = A_1 w0 (mod ). (b) In y >0 an expansion

T _, *
Vr(A)(a T+a2) ‘J(T: A, kr’ vik (I‘))

1

f _ 21:v+k (x) + s, 2 t:n~l-k (r)

A n+kﬂ<(r) 0 n A

1 holds where tz = exp Zui %AT when )\ is real
i E
I N

(tA = tlA being the locally uniformizing variable to {)
and the pn denote constants. (c) In the sense of the

metrization of the automorphic forms of Kr’

ST, A, Kr’ v+k¥(r)) is orthogonal to all forms of Ki.

1 (d) As an automorphic form of K. 3{T, A, Kr, v+k=‘<(r))
]
1: is uniquely determined by (a), (b), {c).

I
ﬂ‘ The result of the summation method, when applied to the

il series {2.3), consists in
i

" THEOREM 2. On every compact domain in y > 0,
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S(t, A, Kr’ v+k*(r)) tends, as r —> 2 + 0, uniformly
to an automorphic form G(7, A, KZ’ v+k*(2)) of K2
which is analytic in y > 0 and satisfies the conditions
{a) (b) (c) of theorem 1 in the case r = 2. 7y these

conditions, 3(T1, A, KZ’ v+ k“‘(Z)), as an automorphic

form of KZ’ is uniquely determined.

3. Next, we have to use a reduction theorem. We {fix on
any canonical fundamental domain Kf of T and denote the cusps

of KI‘ by Ch (1 f_hico). Corresponding to (2.1, 2), we put,

whenever 2<r<r :
—  — 0

o s
-1
¢t = A, o with a real matrix = ( ), ]A l =1
h "h “n *hi h2 h
(3.1)

kh(r) = kAh(r) (0< kh(r) <l if 2<r< ro). “

For brevity we write
(3.2) G__(r, A, v) = 3(r, A, K, vtk (r)) (2<r<r).

Then the reduction theorem to be applied here says
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THEOREM 3., Let F(7) be a non-integral auto-
morphic form of KZ’ analytic in y > 0. There is one,
and only one, decomposition F(7) = A(7) + ¢(7) where
¢(71) denotes an integral form of KZ’ A(T) a linear
combination of a finite number from among the

;]_2(7, A, v) (1<h< O» v an integer, v + kh(Z) < 0)

h!

with constant coefficients. These coefficients are
uniquely dctermined by the principal parts of F(7) in

the Qh.

In order to calculate the coefficients, we write in the general

case (see (2.1, 2))

(3. 3) VZ(A)(a17 + az)z' F(r)= X bn(A’ Fit

Then by theorems 1 and 2 we obtain in the no tation of (3.1, 2, 3):

(3.4) A(7) =

1 ]
Mo
™

bv(ﬁjl’ F)G_Z(Ts Ah: V):

n, and n, , as later on n_ denoting suitable integers. On the

~ other hand, we introduce the Fourier cocfficients of an arbitrary
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3 b3
automorphic form £(7) of KZ' Using N = NI’ k(r) = kI(r), we
write

)
_ n+k(2) _ . T
(3.5) f(7) = n_Zn b (£)t; (t; = exp 271 ).

The main theorem to be proved here is essentially based on

the explicit form of the Fourier coefficients of the series (2. 3).

Putting
(3. 6) G (r, Ay v) =25, ¢t KO
-r 7 A, T
+ zZ c (n, A, v)tn+k(r) (r > 2)
n+k(r)>0

e

* *
and, for brevity, k = k(r), k =k (r), we find, when r > 2,

n+k>0:
1 L1
TN g LIS S
-1 3 y V) =1 N N *
N $
(3.7) ‘.
x 2 mlwE i, A,y @O |fekErk)
+ 1 ml r—l ml NN'P '
m e T'(A,T)

Here, and with Bessel functions Ir 1(z), all powers with non-integral

exponents are to be taken as principal values (largl < 7). T+(A, I

~¥
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denotes the set of the numbers m, > 0 appearing in the second rows

b3 e

of the matrices M = of AI. Moreover
m. m

W(r)(n, A, V=X V‘l(Q) exp 27ri{(n+k)j L LvFk ) }
m r

b
1 o) m N m N

i

where Q = , when ml € T+ is fixed, runs over a full systerr
m, ]

of matrices of Z(A, I) whose elements j are incongruent to each

other (mod mlN). The expansions (3.3, 5, 6) are valid in the total

domain y > 0,

From theorem 2, it follows that

lim ¢ (n, A, v)=c

(nl A: V)
r—>240 T -2

exists whenever n + k(r) >0 for 2< r < rO; besides,
c_Z(O, A, v) =0 if k(2) =0,

Theorem 3 and (3. 4) yield the important formula

o

(o]
b2 z b {8y, Fle_,(n, Ap, v) + b (9).

(3.8) b (F) =
n h=l ytly (2)<0

3] L

v >-n

h

II-142

L — —— e B

—t——— e\ Y~



eenll et e e A e e

HANS PETERSSON

4, In order to prove an asymptotic formula for the bn(F)

(n + k(2) > 0), we shall try to decompose the coefficients ¢ > of

(3. 8) into two terms, a principal term and a remainder., The
principal term is obtained from (3. 7) by putting r = 2 and then

omitting the terms with my > const }fr—l from the X. The main
m.

1
difficulty consists of course in finding an estimation of the remain-
der.

We next introduce auxiliary functions by means of the follow-

ste
b3

a real matrix

]

ing definition: Let X\ be a real number, 5
¢ d

of determinant 1, P2 real number or f = ow. Then we define
2mizSe = 27miaS(p) = 0 if Sp = (i = -(i)
exp 7r1)\ft—exp i P— i p = 1.63.10—-C

and, whenever r > 2:

k -

(4.1) E{(7, P; A, Kr, v+k>':) = z v;l(M)(ml7'+m2)-rexp 27i
MeZ(A, T') N

This series represents a function analytic in y > C and satisfying th;e".

following functional equations: If L = ( )a I then
y &
3 T . sk .
(4.2) E(LT,Lp; A, K, vtk ) = vr(L)(Y'r+6) E(T,f:, A K, vtk );

-

if S is taken as above, then
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. 5 _ T . . sk
(4. 3) E(ST, S?, A,Kr, vtk ) = Vr(A, S)(cT+d) E{T, f,AS, Kr, g’ vik )

where Vr(A,S) depends only on r, A, S and is a continuous

function of r of modulus 1 in 2< r < T . K; s denotes the class
?
! = {1, -7, V! }, where I'_ = S—ll"S
r,S S r,S S
and v; S is a system of multipliers, obtained from v, by a cer-

tain process of transformation.
The series (4.1) provides a certain approximation to the

corresponding G _. We consider the difference

(4.4) D_(7, A, W) =3_(1, A v) - E(r, i & K, Sk (2) (x> 2)

on the vertical half-strip V, defined by le <C,yza (C>1,
a > 0). Subtracting term by term, we see that D—r(T’ A, vy) has

the majorant

- -r-1
(4. 5) £ Clml Hmy7 4 my |7
MeZ(A,T)
ml;éO
on V where C1 (as in the following CZ’ C3,.. .) is a constant.

The series (4.5) is uniformly convergent on V for r > 0.

I
Moreover, applying (4. 2) in the case f =, L = Ul\ and
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using the properties of the general series (4.1) in any vertical half-

strip similar to V, we obtain a Fourier expansion of the form

E(T, o; A, Kr’ v+k>'<(r)) = = e (n, A, V)tn+k(r) (r> 2) |
n+k(r)>0 l
l
valid for y > 0 where
!
2(-27i)" r-1 -r_ (r)
(4. 6) e_r(n: A, v) = —_r_"'—(n + k) E+ m, W (n, A, v).
NI (r) m.eT (A,T) ™

1

This expression may be derived from (3. 7) by replacing each Ir 1(z)
by the first term of the power series of that function, i.e. by

-1 1 r-1 . .
r (r)(—z-z) . Corresponding to (4.4), we write when r > 2,

n + k(r)> O:
(4° 7) C-I'(n’ A, V) = e_r(ns A: V) + d_r(n: A-: V)-

Now we combine theorem 2 with the results on the series

D and we find

THEOREM 4. On every compact domain in y > 0, -
E(1,0;A, Kr’ v+k*(r)) tends, as r —> 2+0, uniformly
to a limiting function E_Z('r, A, v) which is analytic
in y > 0. This function admits a Fourier expansion of

Wa
the form (3. 5) with the coefficients

Yy
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b (E Z) = lim e~r(n,A,v) = e_z(n,A,v)

(n + k(2) > 0).
We have

C—Z(n’ A, V) = e_ (n’ A, V) +d_ (1‘1, A, V)

2 2

(n + k(2) > 0)

where d_ (n, A, v) can be represented by an abso-

2

lutely convergent series.

The series representing d 1'(n, A, v) is obtained by re-

1

placing Ir (z), whenever it occurs in (3.7), by Ir (z) - l_‘_l(r)(lgz)r- .

-1 -1

5. We are now in a position to describe the procedure
which leads to asymptotic forrmulae for the bn(F) (n —wx). We

put

pooo=p_ (A, T)=4ma (A, F)I/(Mk(zm_"v_k ) 5,
n,y n,y v NN"

where a (A, I') denotes an arbitrary positive number depending
v
only on v, A, I. With respect to (3. 8), the three parameters .,

A, I' may be regarded as fixed. By
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, <r<r ),
~-Tr -r -Tr -T 3 -r -r - 0

we denote the expressions arising from (3.7), (4. 6) and the differ-

ence of these series by the additional conditions m, < pu or
— n,v
ml> M resp. in X . Plainly, the 'principal terms" c(l),
» V m -T
SURNEY .
e d e involving only finite sums, tend, as T —> 2 + 0, to limits

which may easily be written down explicitly. Using theorems 3 and 4,

2 2 2
we see that the ""'remainders" c( ), e( ), d( r)

-T -

also tend to certain
limits if r —> 2 + 0. We indicate the six limits by changing the
suffix -r into -2.
N . . Y] (2) . .
ow, inserting c,=¢, + c, in (3. 8), we obtain a decomp-
osition of b (F) in the form b _(F) =H _(F) + R_(F) where H (F)
n n n n n
1)

arises from the double sum in (3. 8) by the substitution ¢, —>c,

and Rn(F) is given by

(o)
(5.1) R (F) =1E s z b (A, Fle (22)(n,Ah, V) +b ().
n h=1 v+kh(2)<0 v - n
v o-n, 1
son, ..

The estimation of Rn(F) to be proved later on rests upon,

the decomposition formulae

2D W)

(5. 2) Y
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and upon an estimation of bn(¢). The result will be
(5. 3) R (F) =0(n) (n —> ).

Considering (5. 3), we add some remarks. If I is a

congruence subgroup of the modular group and v, a congruence

2

character, then, by aid of A. Weil's estimation of certain expon-

£
ential sums, even Rn(F) = O(n ) can be proved for every

€ > 0, The relative exactness of both estimations is very high, as

(1)

the single terms in the numbers ¢ 2 at least in the most import-

Y Vn

ant cases, tend to infinity like e o where Y, has a positive
lower bound. The principal term Hn(F) corresponds to that part
of Rademacher's partition series which contains, according to the
customary interpretation, the asymptotic expansion of the partition

function.

6. For m e T+(A, I") we denote by )‘m (A, I') the (finite)
1

b3 sk

number of the real numbers rnZ in M= ( )E A" which are
myms

incongruent to each other (mod mlN). Then we have
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(1) 2

e (n, A, V)| < C (n + k(2)) p> m_ A (A, T),
-2 2 mlsT+(A, M L my
mli‘:ln’ v
(6.1)
2) 2 _4
[d( (n, A, v)| < C,(n + k(2)) = m. A (A, D).
-2 3 mleT+(A,1") I 'my |
m. >p
1 "n

» vV |

The method used in [4] in order to discuss the convergence of
Poincaré's series may also be applied to estimate the sums in

(6.1). Thus, if A, v are fixed, we obtain

(2)

(6.2) (1)(n,A, v) = O(n log n), d-Z

e_z (n) A, V) = O(n) (n __>°°)'

The estimation of e is more difficult. Putting Q = AhL I

% z
= ( (l1<h<o_, Lel) we find, using (4.2, 3), when r > 2: |
9 9

% ! -1 -r ]
E(T’ w; A, Kr’ vtk (1‘)) = Vr(A: Ah)vr (Q)(ql’T + qZ) X g
4
X {E(Q AAY, K. +k*( ) +A(r)(Q )
{ T,(X), h 2 r'AI—lli v r Q T } ;

1
where Vr(A,Ah) is of modulus 1 and Ag)('r) the difference of two

Series of the type (4.1). Subtracting here again term by term, it is

A
Seen that Ag)('r) tends to a limit Ag) as r —> 2 + 0 and that
|Ag)(Q7)| < C4q1 for 2<r< L From this inequality follows by (6. 3)

LN
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(6.4)  |E(T,005A,K , vtk (r))| < Cclqllaqr +q,|7" (2<r<x).

Next, in order to estimate e _(n,A,y), one has to consider

2

the integral representation of e We divide the straight segment

220
of integration into parts, each contained in one cusp sector of the
network of the fundamental domains LKI‘ (L e I'} and apply (6. 4)
to the integrand on that part. Then, finally, we obtain (A, v being

fixed)
3
2
(6. 5) e_z(n,A,v) = O(n ) when n —> .
By a similar argument it follows that
(6. 6) bn(d>) = O(n log n) when n — .

Now, (5. 3) follows from (6.2, 5, 6). The final result is

THEOREM 5. (For abbreviations see (3.1, 3,5, 7),

theorem 3 and §5.)

c 3
1 ° (1) 2
bn(F) =3 = = b (Ah,F)c_Z(n,Ah, v+ On ) (n —> «).
h=l vtk (2)<0
vZ—nh

The constants a (A_h, I") may be fixed in such a manner
v
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[3]

University of Muenster

HANS PETERSSON

that the arguments of Bessel's functions Il’ occurring

(1)

in the C-Z(n’Ah’ v), have the same lower bound.
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AUTOMORPHIC FUNCTIONS AND INTESRAL OPERATORS

Atle Selberg

I shall in the following give a brief sketch of an independent
approach to certain methods and results that I have earlier [1]

indicated as part of a more general theory.

1. Let us consider a bounded domain B in the space of n

complex variables =z ,..., z_ where in the following, for brevity,

1
we will write z for the n-tuple zl,'. SRR We assume that we
have a group G of regular analytic mappings z —> gz of B onto
itself, which acts transitively on B. Let jg(z) denote the Jacobian

of gz with respect to z, and let k(z,{) be the Bergman kernel-

function of the domain B. We have then

(1.1) jg(Z)jg(é)k(gZ:gC) = k(z, {),

further that the volume element dwz = k{z, z)dz, (where by dz we
denote the euclidean volume element), is invariant under G.
Consider the Hilbert space of analytic functions f(z) in B for
which

2
(L. 2) po el cw,

B (k(z,2))
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where r is real and large enough that our Hilbert space is not

empty; this is, for instance, the case if r > 1. Constructing a

complete set of orthonormal functions d)i(r)(z), i=1,2,..., and

forming the generalized kernel function l‘

(r)

] (=)
0.3 k0= g

(2)9,"'(8),
one finds that
1.4 G =) G0 k (g5, 82) = k (=, L).

From (1.1) and (1. 4) and the fact that G acts transitively on B,

one can show that
(L. 5) k (2, L) = e(r)(k(z, £))7, ‘

where the value of c(r) is given by the integral

2r _.‘
(1. 6) —— = |k(z, 0)] dw,. J,l
B (k(z,2)k(z, )T ° v

For functions in our Hilbert space (l.2), we then have

_ k(z, ), ‘
1. 7) £(z) C(r)f (k(g, g)) f(é)dwg |

e
We can show that (1. 7) also holds for the class of functions £(z)
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r

2
for which (k(z,2z)) £(z) is bounded in B, provided

(1.8) ————I——E dw, < w©,

B (k(¢, ¢)7 ¢

therefore certainly for r > 2,

2. Let now I' be a discrete subgroup of G and let us first
assume that the fundamental domain D of { in B is compact.
Further, denoting the elements of I' by y, let us assume that we
have a representation of | by unitary v X v matrices x(y),
and let F(z) be a column-vector whose v components are analytic

functions regular in the interior of B, and satisfying the relation

(2.1) Flyz) = x(v)(jY(Z))_rF(Z),

where r is an integer > 2, or more generally a number for which
(1. 8) is satisfied, and for which (jg(z))r is single valued on the
group G.

We have then

Fle) = clr)] LICIA I

k(§ £) ¢’

from which we get
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Kr(z’ Q’X)
(2.2) F(z) = c(r) J — F(g)dmg ,
D (k(z,¢))
where
(2.3) K (2 4x) = = X0 (2" (klyz, ). |
vel’ Y (1

The operator occurring on the right-hand side in (2. 2) is seen to be
hermitian; it has only the functions F(z) as eigenfunctions and each
of these with eigenvalue 1. Denoting the number of linearly inde-

pendent such functions by Nr’ we have, therefore,

U(Kr(Z,Z;X))
N_ =c(r) § —_—

r _— " dw ,
D (k(z,z))

Z

where o denotes the trace of the matrix Kr' Introducing here the
series (2. 3) and combining terms where the y's are conjugate to

each other with respect to [, we get

&
r g
@8 N 2ol | GeEd) (e o, 7

¢
{¥}- y
where {Y}F indicates that we sum over one representative of each
conjugate class, and DY denotes the fundamental domain in B of
Fy’ the subgroup of elements of I' that commute with y. A some-

Wy

what more extensive transformation of the terms on the right-hand

side of (2.4) is indicated in [1].
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Let us first see what we can conclude about Nr without

making further assumptions about B or G. Writing

k(yz, 2) . k(yz, 2) 3 (2)

i (z) =
Kz:2) Y ((ya, yalkiz,z) | IJ =1

we see that for large r the dominant contribution to the right-
hand side of (2. 4) will come from the y's that have fixed points.
Denoting by P, a set of representatives (it will be finite) of the
conjugate classes with fixed points, that are different from the

identity, we can obtain an asymptotic expression for Nr:

(2. 5) Nr = vV(D)P (r) + 20 X(P) )V(u / (r)- sr + O(l;) s

PP,

where V(D) denotes the volume of D, Po(r) is a polynomial of

degree n in r, P, (r) is a polynomial depending on P; whose
i
degree m is equal to the complex dimension of the set of fixed

points of p., ¢ is the value of j_ (z _) at a fixed point =z of
P “p; Pi P; P
Pi’ V(G /I"_ ) measures the volume of the fundamental domain of
i i
' in G (where G denotes the subgroup of elements of G

PR P,

that commute with Fi)' In particular if Pi has an isolated fixed

point, we have
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In =
Vi T B ) = mTE T T
Pi Pl

where m, is the order of the finite group | B En is the n Xn
identity matrix, and J_ (z,. ) is the Jacobi m;trix at a fixed point.
Pi Pi
and | | denotes the determinant. |
Since Nr is necessarily an integer it is easy to conclude
that from a certain r on, the formula (2. 5) will be exact without
the remainder term O(%). It seems difficult, however, to prove that
it is exact without the O-term for all r > 2, without some additional
assumption.,
If, however, we restrict ourselves to the symmetric domains
B, we can verify directly that c(r) is a polynomial Po(r), that the
Y's without fixed points give no contribution to the right-hand side
of (2. 4), and that the contribution of the y¥'s with fixed points is such
that (2, 5) is exact for r > 2, without the O-term. For reasons 4
apparent from [1], one need only consider the irreducible symmetric
Spaces, and I have verified it for three of the four main types of -
these (the types called I, II, III in [2], §48).
If, restricting ourselves to the case that B is symmetric,

We apply the same method for the case that the fundamental domain ¢

D is not compact, but still has finite volume, we meet great

7
-~
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technical difficulties. These however seem surmountable so long as
one supposes that the '"non-compact parts' of D arec of the types
that occur for the groups that come from the arithmetic of quad-
ratic forms. In the simple case that B is a product of n unit
circles, and the fundamental domain D is only allowed non-compact
parts like those that occur for the so-called Hilbert modular groups,
the formula (2. 5) has been shown to be valid if we add some terms
coming from aggregates of elements y without fixed points in B,
but which leave fixed some part of the ''non-compact boundary' of
D.

As I have indicated in [1], the method may be extended also
to the determination of the traces of certain types of operators,
that carry the space of forms ¥(z) satisfying (2.1) into itself, as

typified by the so-called Hecke operators.

3. We may generalize somewhat the approach we have out-
lined so that it covers the case that B 1is the full complex space and
I' a group of motions with compact fundamental domain. The
main interest in this lies in the unification, but some of the result-

ing formulas are new even in this case.
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Let us drop the requirement that B be bounded, and suppose
that we have a function pg(z) on G and B, which is analytic in 2
throughout B; for fixed z in B it should be bounded, and finally

satisfy the relation

(3.1) lpg.<gz)pg(z)l = lpg.g(z)l,

for all g' and g in G and z in B. Further assume that the

Hilbert space

(3.2) I 1p )] *ltg2) | dg < o,

—~
(|

where dg is the left-invariant Haar measure on 3, is non-empty.

By taking a complete set of orthonormal functions, we define a

(p)

function k with the property

—_ .
p (o2 (DK Pz, g) = xP)is, 1), )
4
Denoting by dwz an invariant element of volume, we consider the ¥
general Hilbert space for r >1 g
2
(3. 3) f(z) dw < w,

B ]k(p)(z,z)lr “

W

and construct a complete set of orthonormal functions, and then

1459
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(p)

T

define k" '(z,{) in a way corresponding to (1. 3). We obtain

again

kPlz, 1) = (@) x®Piz, ).

T

We can now repeat our arguments of paragraph 2, with p\{(z) taking

the place of j\{(z), provided it is possible by eventually multiplying
the py(z) with suitable factors of absolute value one, depending on

y only) to obtain
3.4 A = ),
(3. 4) PY.(Y )pY(z) pv'\'(/)

for all y' and y in I' and z in B,
If B is complex n-space and 5 the group of translations
z —> z+g, where z and g are column vectors with n complex

components, we put
(3.5) p (z) =e R

where Q is a Hermitian positive definite n X n matrix. Then

(3.1) holds and the Hilbert space defined by (3. 2) is non-empty; also

pg(z) is bounded for fixed z. The problem of satisfying (3. 4) for

our discrete group [ with some choice of Q, leads to the usual
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r' arithmetical condition that the period matrix has to satisfy in order
L that the field of abelian functions should be non-degenerate. This
approach also works if there are motions other than translations

in I as long as the fundamental domain is compact.
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JOINT SPECTRA IN TOPOLOGICAL ALGEBRAS

Richard Arens

l. 0-BANACH ALGEBRAS
Let A be a linear algebra over the complex numbers, and

let there be a family of semi-norms

Halllil[allzi...

each satisfying also | |ab] l < [la]] | [b] |. Then A is a o-normed

algebra, If it is complete, it is a o-Banach algebra. Henceforth

we deal only with commutative ¢-Banach algebras with unit.
Let Ar be the class of homomorphisms { of A onto the

complex numbers C satisfying

1.1 le@)] < Hall, .

Then A = Al U AZ U ... 1is the class of all continuous homo-

morphisms of A on C. A fact (presented elsewhere) is that

1,11 if al, oees an have no common 0 on A, then

a.b +... +a b =1 for some b,...;b in A.
11 n n 1 n

For apes.53  in A, let o(al,...,an) and or(al,...,an)

be the class of all )'1’ e, )‘n such that al-)\.l, e an—)\n have a
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common zero on A (on Ar, resp.). From [1] (see the references)
it can be deduced that, for A semi-simple, if ¢ is holomorphic

on a neighborhood of A, then ¢ belongs to A, in the sense that

ta) = d(t(a)), -0 Lla )

for some a in A. When n =1, the semi-simplicity hypothesis is

dispensable.

Of course, ¢ may be open. In fact, if it is not, and n =1,
there are topological zero divisors ([4], §ll.8). In fact, more is

true (when n =1).

1. 2 It on is not contained in the interior of some ¢
(p > n), then al-)\_l is a topological zero divisor for

some )\1.

When n >1 a similar result holds if the Shilov boundaries

of ITLPTRRE have a common point (see 3.6 below).

1.3 THEOREM: Let A be a o-Banach algebra with one

. 1) .
rational generator z such that z-\ is never a

. . . -1
p2eree %, are rational generators if the quotients pq ', p, q

polynomials in = ,Z_, q non-singular, are dense in A.
n

e
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topological zero divisor. Then A is the vector space
direct sum of two closed subalgebras H and J, where
H 1is the algebra of functions holomorphic on an open set

and J is the radical.

o(z) is the open set in this case. The converse holds, of

course:

1.4 The ¢-Banach algebra Hol(R2) of functions holomorphic
on a separable (connected) analytic manifold Q has no

topological zero divisors, except O,

To prove this one chooses K_,K

1B compact in §, such

that their interiors cover (, and defines |]f| |n = max]f(Kn) . Now

let f# 0. Using a weak form of Weierstrass' preparation theorem,
one can enlarge each Kn slightly so that f has no zeros on its
Shilov boundary. Tﬁis gives an equivalent system of semi-norms
and | |fg] In 2kn| lgl In for every g in Hol(Q).

Every element in the radical of any o-Banach algebra is a
topological zero divisor.

When z_,..., z =~ are rational generators then (r(zl, ey zn)

1

= A, essentially. Even for n =1 we can have o(z) open, but the
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representing functions need not all be holomorphic on o(z).
Whether or not the algebra has such a representation as in

1. 3, some classical results can be generalized:

1.5 THEOREM: Let AI’AZ’ ... be ideals in A such
that the hull of An doe’s not meetz) An. Then there is
a non-zero element common to the ideals Al’ AlAZ’

A1A2A3, e e

Here is a special case:
1. 51 THEOREM: Let ;1, {,2, ... € A with only finitely

many in each An, and none in some Am. Let ,ul,

Horeee be positive integers, and ¢ > 0. Then there is an

fe A suchthat ||f-1] Im < ¢ and f vanishes to the N
[Ji—th order at gi i=1,2,...). «?,};;
My A
{This means fe¢ M where M is the kernel of gi.) .

A Mittag-Leffler form is also possible,

1, 52 THEOREM: Consider the hypotheses of 1. 51.

2
) This means for each { ¢ An there is an a ¢ An such that {(a) # 0.

2
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Let there be given also B128pree € A. Then we
can find g e A such that g - g; vanishes to the pi-th

order at gi (i=1,2,...).

2. REPRESENTING MAXIMAL IDEALS BY POINTS
A Bereich Q is an n-dimensional analytic manifold with n
functions ZyseeesZ such that the mapping z : Q into Cn, where
w goes into zl(w), “ees zn(w), is a local analytic isomorphism.
2 is schlicht if z is 1 - 1; one can then say Q is con-
tained in Cn. As already indicated, Hol(§2) is a g-Banach algebra.
The following theorem is based almost wholly on the ideas of

H. Cartan.

2.1 THEOREM: Let Q be schlicht and maximal, in the
sense that if Q ) Q then some f in Hol(R2) cannot be
extended to Ql Then A =Q.
Proof: As a metricin © use max |\, —uil as the distance
1<i<n

from xl,...,xn to ul,...,un. Let K be compact, and let AK be

the { ¢ A for which
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2.11 l¢(f)]| < max|f(K)|.

Let the closed r-neighborhood W still lie in Q; and let K be con-
tained in the open ball B of radius R in C". Then B MW=L is
compact, For x e L (using the maximality and the theorem [3],

p. 627) we can find f in H (abbreviation for Hol(f)) such that

2,12 [f(x)] >1
while
2.13 max |f(K)| < 1;

and we can find fl, ceos fp ¢ H such that 2.13 holds for all of them,
while for x € L, 2,12 holds for at least one of them. Make

fp+i = Zi/R’ and consider the ''polyhedral domain'

P={lgl <1} n.on g, I <1}

Then KCP. Nowlet feA Let A = g(fi). If the functions ‘

K"
fi - )‘i have a common zero on P, then this point "represents' ¢,
because every function in H can be uniformly approximated by

polynomials in fl' .«. on P (Oka-Weil theorem),* In the contrary

case one can, at each point \ of P, find gpreves gp+n holomorphic
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in a polycylinder, such that
2.14 Z(fi - )‘i)gi =1,

(This is because 2.1 is true when § is a polycylinder - an
elementary fact.) Then by [2], theorem 4 bis, we can solve 2.14
with g; holomorphic in a neighborhood of P. Replacing these by

polynomials in £ we can make

1,...

ma.xlb(K) | <1

where b = Z)(fi - )‘i)bi -1, bi e H. But {(b) = -1, This contradiction
3)
of 2.1l proves 2.1,
Our original idea was to study o-Banach algebras by means
of Banach algebras; but in algebras of holomorphic functions it now

seems proper to work the other way around.

For any set K in c" we let Hol(K) = H be the class of

3)

Actually, a few pages later Cartan proves a result ([2], p. 63,
Cor.) which can be used more neatly than "4 bis'. We proceeded

as we did in order that we might point out that Cartan's global result
(the Corollary) is a result of his local proposition (''4 bis'") plus the

purely intrinsic approximation technique involved in 1.1l1.
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functions holomorphic in a neighborhood of K, subject to the usual

identification (see [2]). If K is compact, "we can norm H:

2.15 £]] = max|£(K)]

and if we like, complete it, Every continuous homomorphism satis-

fies 2,11, and their totality we denote by AK again,
2,2 THEOREM: K(C A, andin fact

A__ = () dom(f)
K feH

where dom(f) is the largest Bereich to which f can be anal-

ytically continued.

Let f,...,f ¢ H and make f ., =z, as before. Let H
1 P p+i i

be the algebra generated by f ,f

EEIERE regarded as functions on

Q =dom(f1)ﬂ.,..ﬁdom(zn). Q is maximal for Hl. Hence { is

4)

To obtain AKC Cn, an additional condition must be imposed.
It suffices to assume that H has generators with schlicht domains
of holomorphy. On the other hand, if (as I have been told at this
conference) Cartan's theorem extends to non-schlicht domains of
holomorphy, then the theorem extends also, except&’_chat the inter-

section has to be understood as an inverse limit.
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represented by a point \ of Cn, unique because g(zi) = )“i deter-
mines \. This essentially proves 2. 2.

This algebra is not always finitely generated, so far as I
know (except in an extended sense: Zyrrees zn could be called
""holomorphic generators')., Yet A = 0(21, e zn).

Let Rat(K) be the algebra of those rational functions whose
denominators do not vanish on K. Norm as before. Let Poly be
the ring of polynomials. Suppose A is a subalgebra of Rat(K),

and A D Poly. In particular, A might reduce to Poly.

2,3 THEOREM:

A = m {f] <1}.

B e, |lel]a

Proof: Of course, every point on the right side yields a

{eA Conversely, given ¢ ¢ A_, we can find the corresponding

K’ K
point, A\ = g(zi), and for fe¢ A we surely have £(\) = {(f).

What becomes of this elementary proposition if the condition

PolzC A is dropped?
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3. SHILOV BOUNDARIES
We have already (before 2.15) given the definition of H(K)
for (in particular) compact subsets of c”. That minimum, closed
subset bK of K on which all the functions in H(K) attain their

maximum modulus (on K) may be called the Shilov boundary of K.

One could replace K by AK (see 2.2) and arrive at an isometric

algebra; and then one could consider bA From the minimum pro-

K
perty of bK, it follows that bAK lies in K and thus coincides with
bK.

Now let A be a commutative Banach algebra with unit; let

a,...,a_ be clements thereof, and let K =o(a.,...,a ) as
1 n 1 n

defined in §1l. There is then a mapping

3.1 A —> K

Oor even

3.11 A 4
— AK

(where A is the space of continuous non-zero complex-valued
homomorphisms of A). If this were implemented by a continuous

L3

homomorphism
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3.2 H(K) —> A

then we could at once assert that in 3.1 or 3.1l, the Shilov boundary
I’ of A is mapped on a set including bK, and this is in fact true.
By the main theorem of [1], functions in H(K) do give rise to
elements of A, and when A 1is semi-simple, to unique elements.
But the isomorphism thus set up on H(K) (which is incomplete) is
not usually continuous, except when sup norms are used. This,

however, is all that is needed for the result
3,3 I'—9>l“lDbK;

and in any case a simple direct argument yields 3. 3 even without
semi-simplicity.

Therefore, points of bK are permanent points of the joint

spectrum. On the other hand,

3.4 if ()"l’ eees )‘n) belongs to the joint spectrum and
there is an element a ¢ A such that ¢(a) =0 when Z;(a.i)
= (i=1,...,n) and a is not a topological zero

divisor, then ()\1, caes )\n) is not a permanent point.

The reason is that {(by a construction to be published soon)
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there is an extension algebra B of A in which the element a has
an inverse. Consequently those ¢ ¢ AA for which g(ai) = )‘i are
not extendable to B,

It would be good to know the converse, that is: if {(a) = 0

whenever g(ai) = )\i implies that a is a topological zero divisor,

then ()'1’ oo )‘n) is a permanent point. It would follow that
finitely many non-permanent homomorphisms {or, in a sense, maxi-
mal ideals) could all be removed by a single extension.

Combining 3, 4 with the preceding result we have

3.5 If ()\1, cons xn) ¢ bK then each a, - )‘i is a topological

zero divisor.

3.6 THEOREM: Let Bseeer be elements of a commutative
o-Banach algebra with 1. Let ()\1, vees xn) belong to the
Shilov boundary of on(a.l, e an) for almost all n. Then

each a; - 7\1 is a topological zero divisor,

University of California .
Los Angeles, California
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ALGEBRAIC PROPERTIES OF
CLASSES OF ANALYTIC FUNCTIONS

R. Creighton Buck

1. INTRODUCTION
Many interesting function spaces and algebras can be
obtained by completing a space of polynomials in an appropriate
topology. This paper deals with the algebra B of bounded

analytic functions in the open unit disc. We shall characterize

the dual space of strictly continuous linear functionals on B,
showing that they may be regarded as a space of functions, analytic
in the open disc, whose Hadamard product with each bounded
function is continuous in the closed disc, Some information is then

obtained about the strictly closed ideals of the algebra B.

2., TERMINOLOGY

3

Let D be the open unit disc, |z|<1. By A, B, and C, we s

mean (respectively) the algebra of all functions analytic in D, all Y

those that are bounded in D, and all those that are uniformly con-
rd

tinuous in D. The algebra C is thus the algebra of functions
analytic in D, continuous in D. Clearly, ADBD C. Let P be
the subalgebra of complex polynomials, A and C can be obtained

s

as completions of P, For A, we choose the compact-open 1
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topology k of uniform convergence on each compact subset of D;

for C, we choose the topology ¢ of uniform convergence on D.

(k is metrizable, and o is normable; one may use the norm

[£]] = sup |£(2)].)
zeD
Information about the structure of A is fairly complete:

(see [4], [5]. [7])

(i) The polynomials are k-dense in A.
(ii) Every principal ideal is k-closed.
(iii) The closed maximal ideals of A are the fixed

ideals M associated with points @ of D; M_ = {feA|f(a)=0}
(iv) The closed primary ideals are powers of the Ma'
(v) Every closed ideal in A is principal, and is the
intersection of primary ideals.

(vi) Every closed prime ideal is maximal.

There are, of course, non-closed maximal ideals, and non-maximal
prime ideals; however, the structure of the closed ideals of A is
quite clear.

Due to the work of Wermer, Beurling, Arens, Rudin, and
others, the structure of the algebra C has also become known (see

[6]). However, the larger algebra B is less well understood;
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important contributions have been made by Kakutani, Chevalley,
Carleson, and Rudin. It has been customary to study B as a
Banach algebra, extending to it the norm topology o on C. This

has certain unwelcome consequences:

(i) The polynomials are no longer dense in B.
(In fact, C is a proper closed subalgebra.)

(i1) As a Banach space, B is not separable,
(A. E. Taylor)

(iii) Principal ideals are not always closed.

n
Proof: Let pn(z) =l+z+...+2,q = (p0 tp ... +pn)/(n+1)
and fn(z) =Yl -z q_n(z). Then, (l-z)fn(z) —> Y1 - z uniformly

in D, but V1 - z does not belong to the ideal generated by 1 - z,

(iv) Closed ideals are not always principal.
Proof: Let I= {fe¢ B | lim f(x) = 0}, This is a o-closed ideal re
x—>] ,”

in B. Suppose I= (g). Since z -1 liesin I, g has no zeros in ¢,
D. Accordingly, ¥g lies in I; this implies that 1/Vg is in B,

and I would be all of B.

(v) There are closed maximal ideals in B not of the

form M .
a

II-177
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In fact, since B is a normed algebra, all maximal ideals are
closed; the closed ideal I above is contained in a maximal ideal
M which cannot be a fixed ideal.

For the algebra C, the work of Rudin shows that every
closed ideal, while not necessarily principal, is the closure of a
principal ideal. This is clear for an ideal Ma with |a| <1, but is
not so immediate for |a| =1. In fact, however, the ideal M1 of
functions in C which are zero at z =1 is generated by z - 1; any
function f in Ml is the limit, uniformly in D, of a sequence
fn(z)(l - z). This can be seen at once as follows. Let I be the
uniform closure in C of the ideal (z - 1), and let L be any con-
tinuous linear functional on C which vanishes on I, In particular,
then, L(zn(l -2)) =0 for n=0,1,... andthere is a constant ¢
such that L(zn) = ¢ for all n. Hence, L(f) = cf(l) for every fe C,
and L must also vanish on M,. Since this holds for any choice of

1

L, I= Ml.

This fact is no longer true for the algebra B.. A maximal

ideal of B which is not one of the ideals M(1 for |a| <1 is never

the closure of a principal ideal. Suppose, for example, that M = (g),

the closure of the principal ideal generated by 3. There must be a
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sequence a ¢ D such that g(an) —> 0. Let I{ {an}) be the closed
ideal of all functions f in B such that lim f(an) = 0, This con-
tains g, and must therefore be M itself. However, considera-
tion of Blaschke products shows that a sufficiently rarified sub-
sequence {ﬁn} of {an} can be chosen so that I( {[3n}) is a proper
closed ideal properly containing M.

For B, in the uniform norm topology, we have thereforec the
following picture (here C*[D] denotes the algebra of all continuous

functions on D):

cCBC c*[D]

b EmE ep

where the second line lists the spaces of maximal ideals. It is

easily seen that the mapping ©' is onto, but that it is not

&

one-to-one. The following argument shows that 8 is not one-to-one. #
. . Y

Choose two sequences {o.n}, {Bn} tending to 1 in D such that e

4

-

d(an, |3n), the non-Euclidean distance, tends to zero. From Pick's,
theorem, one sees that I({an}) = I( {ﬁn}). Define two homo-
morphisms on C* by H'(f) = LIM f(an), H'"'(f) = LIM f(ﬁn), where
LIM is a particular Banach limit, It is easily seen that H' and

s
H" are distinct on C , but agree on B. Whether the map 0 is
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onto remains an open question.

This suggests that it might be more suitable to study B
with a topology different from o. Since B can be regarded as a
subalgebra of C*[D], it is natural to use in B a topology appro-
priate to the larger algebra; since D is locally compact, a natural
choice is the so-called strict topology P (see [1]). Let CO[D] denote
the continuous complex valued functions on D which "vanish at

infinity'" (i.e. lim ¢(z) = 0).
l Z | —>l

DEFINITION: A net of functions f e C'[D] is strictly
convergent to f (written f(1 —ﬁ—> f) if for each ¢ ¢ CO[D]

o f Zs ¢f.

a

One easily seés that B 1is closed in C'[D]. (Remark: it is
interesting to observe that Carleson [3] was led to consider a simi-
lar condition for individual functions ¢, in his study of B.)

Specialized to B, the strict topology has certain simple properties:

(1) The topology B is topologically complete, locally
convex, but not metrizable.

(ii) On uniformly bounded sets in B, B is equivalent to
pointwise convergence. (Accordingly, bounded sets are sequen-

tially compact. )
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(iii) The polynomials are dense in B. (Landau)
(iv) Let fe B, and for any A, 0< xf_l, let

£ (2) = £0). nmmfkfgi as 21
(v) Let ge B and have no zeros (in D). Then,

' g)‘e B for each X\ >0, and g)‘-ﬁ—>l as )\\LO.

The last two particularly show the contrast between the

? topologies B and o. This is also shown by the following:
}
i 4

a z <> 0 ifand only if lima_ =0

n n
n B . .

a z 40 if and only if a = o(l)
i a 2" £> 0 if and only if lim sup Ianll/n <L
> 3. THE DUAL SPACE OF B.

Any strictly continuous linear functional L on B can be
. . *
extended to a continuous functional on the larger space C [D].

) From known results, we may represent L by

L(f) = [f £(z) du(z)

11-151
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On B, however, it is natural to expect that the dual space may

also be represented by a space of analytic functions. In the pre-
sent case, this is made easier by the observation that D and D
are both semi-groups under multiplication. Following a procedure
used elsewhere [1], let U, Dbe the linear transformation of B into
itself defined by Uw(f) = fw where fw(z) = f(wz), and [wl <1. Let
L. be any continuous linear functional on B. Then, we may con-

struct a linear transformation T on B by setting T(f) = F where
F(w) = L(Uwf).

THEOREM 1, T 1is a continuous linear transformation

from <B, B> into <C, O’>.

Note that L(f) = F(1). This theorem has a number of analy-

; since zk £> 0, lime¢, =0,

tical consequences. Let L(zk) =c K

k
Set h(w) =X cnwn. Then h is analytic in D, and if f(z) = % a.nzn

is any function in B,
F(w)=Xa c w'
n n

is continuous in |w| <1, and
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L(f) = F(1) = lim Lac .
T Tl n

Thus, the dual space of B can be regarded as a subspace of A,

such that f *h (the Hadamard product of f and h) lies in C for

every f e B.

Specific examples of representing functions h can be found.

THEOREM 2: Any function h in the class HZ defines

a strictly continuous functional on B.

*
Proof of this uses the fact that a functional on C [D]

which is p-continuous on the B-bounded sets is in fact continuous.

THEOREM 3: Let lanl <1 with lim ]anl =1, and
let X |bn| <o, Then, L(f) = X f(o.n)bn is a continuous

functional.

The corresponding analytic function is h(w)} = X bn(l - anw)_l
which need not belong to HZ' "‘

When h is analytic in the closed disc D, the corresponding
functional L is k-continuous on B. Such functionals can be shown

to be dense in the full dual of B, in the bounded-open topology,

i. e. uniform convergence on bounded subsets of B.
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S



R. CREIGHTON BUCK

4. IDEALS IN B
In a topological algebra in which multiplication is at least
continuous in each factor, the closure of an ideal is an ideal.
Hence, a maximal ideal is either closed or dense. When the set
of regular elements (units) is open, every maximal ideal is closed.

In ‘B, the set of regular elements is not open.

THEOREM 4. The strictly closed maximal ideals
of B are the fixed ideals Ma associated with points

a £ D,

THEOREM 5, If g(z) is either a polynomial with no zeros
on the boundary of D, or a Blaschke product, then the
principal ideal generated by g 1is strictly closed, and is

the intersection of closed primary ideals.
It is not true that every principal ideal in B is closed.

THEOREM 6. 1 - z generates a proper dense ideal in B.

COROLLARY. For any function fe B, (1-z)f(z) generates

a non-closed principal ideal in B.
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In A, any function g with no zeros in D is a unit, and
thus generates A. In B, g is a unitif 1/g is bounded in D.
What can be said about (g) if merely g(z) # 0 in D? There is

evidence both for and against the following

CONJECTURE: If ge B, and g has no zeros in D,

then (g) is dense in B,

THEOREM 7. If g e B and the real part of 1/g is

bounded from below in D, then (g) is dense.

COROLLARY. If g, g' and g arein B, then (g)

is dense,

Another special case in which the conjecture can be veri- S

fied requires a rather interesting behavior for g

o g
?

! THEOREM 8. Let ge¢ B, and have no zeros in D.

Suppose moreover that there are positive constants M

and N such that

}g(z) l
|

é,
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for all |z| <1 and 0< A<l Then, (g) is dense in B.

COROLLARY. If g is analytic in D, and has no zeros

in D, then (g) is dense in B.

It is clear that a proof of the conjecture would reduce the
study of strictly closed ideals in B to a consideration of the ideal
generated by two Blaschke products with no common zeros; for, if
I is a closed ideal in B, and f ¢ I, then f = bg where g has no
zeros in D; if (g) is dense, then b e I. The argument used by

Schilling [7] can then be applied.

The substance of the conjecture can be given different forms.

THEOREM 9, Let g have no zeros in D. Then, (g) is
dense in B if and only if the quotient algebra B/(_g)- obeys

the ascending chain condition for closed ideals.

THEOREM 10. The conjecture is equivalent to the assertion

that g lies in the closure of (gz), for every non-vanishing g.

In the opposite direction, however, we have the following
result; it shows that a proof of the conjecture must make full use

of the non-metric nature of the strict topology.
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THEOREM 1l. Let g(z) = exp (z+l)(z—l)_l. Then,

there does not exist a bounded net {fa} with f8 —&) 1.

5. FURTHER CONSIDERATIONS
As indicated in Section 2, the strict dual space of B is
also a space of analytic functions. It is not difficult to see that it
is also an algebra, under the operations of addition and Hadamard
multiplication. It wc;uld therefore be of interest to know more of
its structure. The full endomorphism algebra X(B) is also of inter-
est; the differentiation operator D is not B-continuous, but its

role can be filled by the difference operator

Af)(z) = i(z) - £(0) .

Z

%
It is clear that some of the discussion given above will hold 2

also for the algebra B(D) where D is a multiply connected region 'fy

“

4
in the plane (at least when D has finite connectivity). One may 3.159’ -

consider the space B(D: E) of bounded vector-valued analytic
functions. This is no longer an algebra, but is a module over the
algebra B(D). One would then seek to describe the strictly closed

submodules of B(D: E). Some results of this nature have been
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obtained [2] for the full module of bounded continuous E-valued

&
functions on D: If M is a submodule of C [D:E] such that ‘

*
M(p) = E for each pe D, then M is strictly dense in C [D:E].

(1]

(2]
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MULTIPLICATIVE'FUNCTIONALS ON BANACH ALGEBRAS

Liennart Carleson

1. INTRODUCTION. An outstanding problem in the theory
of Banach algebras R, here always assumed commutative, with
unit but without radical, is the characterization of the closed ideals
I and in particular the relationship between these ideals and the
set of maximal ideals. In order to make methods of analysis avail-
able, the natural approach to the problem is to study functionals
F(x) taking real or complex values and, e.g., vanishing on I.

Inl -1 correspondence with I, there is a subadditive (s.a.) and

submultiplicative (s.m.), homogeneous and continuous functional

F(x) defined by F(x) =inf |[|x - i|]| = | x| lI' On account of the
iel

trivial relationship between F and I, these functionals are of no

interest in the present context; most existing results have been

obtained with the aid of the linear functionals, existing on any #
3
Banach space, which have the very serious drawback of having no S

connection with the multiplicative structure of the space. The only
exceptions are the maximal ideals for which the Gelfand functionals,
here denoted by fM(x), exist and reproduce multiplication.

A very natural question in this situation is this: if we re-

strict or modify the conditions (s, a.) and (s.m. ) above without
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going as far as Gelfand, do we in this way get any new tools for the
study of closed ideals? In considering this question it has turned out
that the conceunt of a multiplicative functional iz of some interest
while other obvious modifications are equivalent to the Gelfand
functionals. Since the statement and proof of the latter negative
result is so simple, we shall give it here. As to the theory of
multiplicative functionals, we shall here discuss only those prob-
lems that are of interest from a function-theoretic point of view,

No complete theory is presented; our principal aim is to point out

the interesting problems that are connected with this concept.

THEOREM. Let F(x) (%Z 0) be a continuous functional,
F(0) = 0. (a) If F(x) is multiplicative and subadditive,
taking real values, then F(x) = |fM(x) |a for some a >0
and some M. (b) If F(x) is linear, homogeneous and
submultiplicative, then F(x) = c»fM(x) for some M and

some C, lci _>_1.

Proof. (a) F(x) = 0 on a closed ideal L If Xe R/I,

5(X) = F(x+i), x € X, is uniquely defined and vanishes when, and

only when, | |XH does. Since G(X) is subadditive, it is equi-
valent to ||X|], and since G is multiplicative, R/I is, by a
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known theorem, isomorphic to the complex numbers., Thus I = M
for some M and since F(x) = F(\e), x ~ Ae ¢ M, the result
follows,

(b) Obviously F(e) = c, lcl >1, Since

(O] = PP + 20F(xy) + FiyY)| < [aFlx) + F(y)| 2

we find, choosing x = e and ) = -F(Y)C_l, F(Y)Z = CF(YZ)- If

F(x) = 0, the relation c-F(xy) = F(x)F(y) is trivial; if F(x) # 0,
we choose in the relation above ) = —F(y)F(x)_l, and find

c- F(xy) = F(x)F(y).

2. DEFINITION. w(x) is a multiplicative functional

if w(x) 'is defined on R taking real values and satisfies

the conditions ;
(1) wixy) = wix)- wiy) 4
(2) lim w(x) =0, lim w(x) =1. .
l ]xl l—>0 Xx—>e
If w(x) is bounded for ||x|| bounded, we use the term

bounded multiplicative functional. Note that if w(x) is only defined

on the group G of elements having an inverse, it can be extended

vy
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to R by putting w(x) =0, x¢ G.
An obvious consequence of the definition is that w(x) is con-
tinuous on G. Namely, if x —)xo and x -1 exists, then
o

X X —> e and
n o

; -1 . -
lim w(xn)w(xo) = lim w(xnxo )y =1
n=co n=co

by (2). Another consequence of (2) is that w(\e) = ])\Ia, a>0,
Let )\0 be a point outside the spectrum ox of x, so that
y=x - )\Oe has an inverse. If ux()\) = u()) = log w(y - \e), we find,

if l)\ - )‘ol S_P does not meet O'X,

| -l zm—r‘{ ! zm-r‘f
= > u()\0 + Pe ) = o 2 log w(y - Pe )
v=0 v=0

1 n n
_;logw(y - P )

= log w(y) + l; log w(e - Pny—n).
1

Since lim | Iy—n] |n= Max])\ - )‘ol
n=c0 \EC

-1 < lF, the right hand

side tends to u()\o) by (2), as n —> w0, We find

1’ i0
i u()\O + pe }do = u(xo)

and conclude that log w{x-- \e) is harmonic outside O'X.
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Let 1_1-()\) be a conjugate function of u()\) and we are inter-
ested in the function fx(x) = u + iu in the component of the comple-
ment of ¢ containing the point at infinity. fx()\) is analytic and
f}‘{()\) is also single-valued there. Since u(}) =a 1og])\! + 0(1),
f(o) = 0.

If

a Lx)
'{ '—Z-+...
A

f! (x)

we shall prove that ILi(x) is a bounded linear functional on the

algebra R.
Since u (A} =u (A) + a 1oglc] we have f‘ ()\) = l— ! (A).
cx x'c ! c x'c
This yields, for P sufficiently large,
l .
L{cx) = £ Ondx= —— | £.00ndx = cL(x).
i x
lxl-g) |e] © [x]=p

Furthermore

1o {w(x— Ae)w(y-ie)

-1 -1
w{x+y-2e) } = arlog || + log w{e-n "xylxty-re) }.

)
It is easy to see that the last term is O(\ ), Ix]| — o, which

means that f}'{ + £ - f§I{+y has a vanishing second order term in its

Laurent development. We have thus proved that L(x) is a linear

=y
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functional. That L(x) is bounded for ||x|]| <1 is a consequence
of the fact that ux(x) is uniformly bounded for, e.g., l)\l > 2.
Conversely, if L is any linear functional, the relation
log w(x) = Re {L.{log x) } defines a multiplicative functional on the
connected part GO of 5, containing the identity. If 30 = G, the
multiplicative structure of R thus determines the additive struct-
ure; an interesting problem is to decide to what extent this holds for
general rings, i.e., to characterize those linear functionals that may

be obtained in the way described above.

3. In the following we shall be concerned with bounded |
s s . . n n, . n
multiplicative functionals. Since w(x) = w(x ):; Const. l Ix [ l,

we have

wix) < [ ]=]] = up |£,,(x)

If u is a non-negative Radon measure on the space of maximal

ideals, the relation

w(x) = exp{ [ log|f, (x)]du(M)}

defines a bounded m.f.. The main problem in this section is to
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prove a preliminary converse of this result.

THEOREM. Let Pn(a) > 0 be a continuous function
for all complex a and let Pn(a) —> 0, n —> 0, uni-
formly., If the circles |z - al = Pn intersect the
complement £ of o in sets of capacity Pn, then

ux(x)=(£10g|z— Adu (z), p >0, xe@.

It is obvious that our assumptions imply that o has no
interior points. For \ ¢ o we redefine ux(k) by the relation
u()\) = lim ux(u).

u—>x

MHeS2
In this way u(\) becomes an upper semi-continuous function., For
an arbitrary point )‘o e Q we consider the associated circles
lz - xol = Pn; to simplify the notations we put )\O = 0, By assump-

tion, there is a sequence of polynomials P (z) = z' +... with .
. v L

zeros on |z| = Pn such that
L
lim inf |P (z)|v =P .
v=o O v n
I1-195¢7
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We consider the elements P (x) of R and find, if )\k, k=0,1,..., 1
v

denote the zeros of P (z),
14

An application of the maximum principle shows that

-1
1 Y -
> L uly) =% log P_(x) = log w(x) + = log wix" P (x)).
v v v v v
Since {)‘k };_l is asymptotically equally distributed on |z ] = P
u is bounded above, we find
1 7 1 P (z)
— f u(P )de >u(0) + lim = inflog |[-——] .
27 v
=T y=0 g Z (

e
u(x)<—1 )\+Pe de, xoeﬂ.

It is now easy to see that we are able to use the general definition
of subharmonic functions (based on a sequence of circles) to con-
clude that u()) is subharmonic in the whole complex plane, Since
u()\) is harmonic on € and u()) = a log IXI + o(l), lxl —> 0, the
Riesz representation theorem shows that u(A) is a potential of a
positive mass distribution on o.

The above metrical condition becomes more interesting if
we observe that the representation formula can be proved by

ordinary extension methods (cf. §5 below) if the set of rational

===
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functions is dense among the continuous functions on ¢. It is very

plausible that there is an intimate connection between multiplicative
functionals and approximation by rational functions and that we

have here a new way to approach this difficult approximation prob-

lem.

4, Even if we know about every separate element x of R
that log w(x - \e) can be represented by a potential, it is a non-
trivial problem to decide if all different set-functions My are
projections of one and the same set-function u on M. This is

in fact true in a very general case.

THEOREM. There is a positive measure u on M

such that

(*) w(x) = exp I ]_oglfM(X)ldu(M), xe 3 *
M .

holds for all x such that, e.g., mo_ = 0. &

What we need to know about oL is that the set of rational’
functions is dense among the continuous functions. This condition

is probably best possible.
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We shall here outline the proof in the case of two elements

x and y; this case contains the essential features of the problem.

It can then be condensed as follows, Given a two-dimensional set

S with projections SX and SY on the coordinate axis, and given

By and “y on SX and Sy respectively, under what conditions

are u_ and #Y Projections of a u on S? This problem is equi-
valent to the marriage problem (in its finite form) and we shall form-

ulate the result for our particular situation,

LEMMA. Let Ex be an arbitrary closed subset of

o and define EY by the relation

E =y [, E }.

Then EY is closed and Mo and uy are projections of

one and the same u on m if and only if, for every

choice of E , .
X
(B < (E ).

We now construct a decreasing sequence (in absolute value)
of rational functions X (\) such that X (N) — e, ne Ex
v v

X (A —1, n¢ O'X - EX. This is possible since any continuous
v
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function on o can be uniformly approximated by such functions.
Similarly, we construct Yv(x) corresponding to oy; here we also
require that ]Yv(n)| > IXV( £) [ , if there is an M such that

fM(x) = ¢ and fM(y) = n. It is easy to see that this is possible.

Ifnow a =X (x)-Y (y)-l, then w(av) <1, since for all M,
v 14 v -

-1 -1
={f (X ) f = . <l. W
£y )] = T (X )£ (v )7 = X (0] [y (] < e need
only observe, finally, that log w(X ) —> ux(Ex) and
1%

log w(Y ) — uy(Ey); the theorem is thus proved.

v

Simple examples show that for the validity of the above

representation formula it is necessary to require at least that o

has no interior points.

5. We shall in the last two sections assume that R has an

s
involution x —>» x . The above representation formula can then be "
o
proved very simply. e
AF
rd

THEOREM. For rings with involution the represent- ,

ation formula (*) holds generally for x ¢ G.

If (*) holds for all x, we call w(x) normalized.

It is obvious that w(x) = W(X'h), x € G. Hence, if y = qu\,

e
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cy is situated on the real axis and thus (%) holds for y. Since
w(y) = w(x)z, (*) holds also for x.

A direct proof is obtained if we observe that fM(x) is dense

among all continuous functions on 77[ Thus 1og|fM(x)| =lzlog(fM(y))

is dense among the real continuous functions and by considering
the elements ya, -0 < a <o, it is easy to see that log w(x) gener-
ates a real bounded linear functional on the dense subset. If

lfM(x)] <1, M« )7], log w(x) < 0, and it is then well-known that
log w(x) = | longM(x)Idu(M)

for a certain non-negative set function pu.

6. In closing, we shall set down the ideal problem that is
in a natural way associated with the concepts introduced above. We

here assume that R has an involution.

Let I be an arbitrary closed ideal. With I are associated

the following ideals:

I : the intersection of all maximal ideals M D) S

0
]'1: x € 11 if any normalized w{(x), which vanishes on I, also

vanishes for x =x .
o
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I,: x_ ¢ 1I,, if there exists an x ¢ I such that
2 o 2
1og[fM(x)I < const, longM(x)I.
I.: x e 1., if for some n,xnsI.
3 o 3 o

If we use the representation formula we see that L.L is

actually an ideal, not necessarily closed. We have the inclusions
1CLCLCLCry

and, for a deeper understanding of the ideal structure of the given

algebra R, it is of great interest to analyze the above inclusions,

University of Uppsala
Uppsala, Sweden
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LINEAR INEZQUALITIES AND CLOSURE PROPERTIES
IN NORMED LINEAR SPACES

Ky Fan

I. In this abstract we shall summarize some results on
linear inequalities and closure properties in normed linear spaces.
The closure properties discussed here are suggested by certain
uniqueness theorems for analytic functions. The study of these
closure properties is closely related to existence theorems for
linear inequalities,

As usual, the conjugate space of a normed linear space X
will be denoted by X*. The adjoint transformation of a continuous
linear transformation A in X will be denoted by A*. The polar
convex set of a convex set C in X will be denoted by é, which is

defined by

A %
C={peX [¢(f)<1l forall fe C})

A convex set C in X 1is said to be Euclidean-closed, if, for any
continuous linear transformation T from X onto any finite
dimensional Euclidean space En, the image T(C) of C is closed

in E". Clearly, every weakly compact convex set in X 1is Euclidean-

closed. Also every linear subspace of X (not necessarily closed in

X) is Euclidean-closed. On the other hand, even in a Euclidean space,

!
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a closed convex set need not be Euclidean-closed,

transformation in a real normed linear space X, let C
be a Euclidean-closed convex set in X suchthat 0 ¢ C.
Let g, ¢ X and X\ # 0 be a real number. Then there

exists an f ¢ X satisfying the relation

{ THEOREM1l, Let A bea completely continuous linear
} (1) Af-xf—goeC,

A
if and only if 1 + ¢(go) >0 holds for every ¢ ¢ C satis-

If C is closed in X instead of being Euclidean-closed, the

1 fying A'¢ - xp = 0.

conclusion of Theorem 1 need not hold even for a finite dimensional

4
space X, -

When C is a convex cone, relation (1) is a natural general- A
”~
ization of linear inequalities. When C consists of the null-element -

r

0 alone, Theorem 1l becomes Riesz-Schauder's generalization of -

an alternative theorem of Fredholm (see [11], [12]). Riesz-Schauder's
theory has been extended by Leray [7] to locally convex topological
vector spaces. Our Theorem l can also be extended to such spaces.

For more explicit systems of linear inequalities, we have

z.
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THEOREM 2. Let {f } be a family of eleme'nts,
v vel
not all 0, in a real normed linear space X, and let

{a } be a corresponding family of real numbers.
v vel
Let
n
o=8up X \.a ,
. 1 v,
i=1 i

when n =1,2,3,...; v; € I and )‘i vary under the con-

ditions

n
N >0 gign)y [[Zaf [] =1L
i=1 i

Then there exists a ¢ ¢ X satisfying the system of linear
inequalities

(2) $(f)> a (v el
14 v

if and only if o is finite. Moreover, if the system (2)
» * 3 .

has solutions ¢ ¢ X , but the zero-functional is not a

solution, then ¢ is equal to the minimum of the norms

of all solutions of (2).

The proof of Theorem 1 is given in [6], that of Theorem 2 is

in [5].
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2. We turn now to the closure properties in normed linear
spaces. The results summarized below are contained in a joint
paper by Davis and myself [4].

Usually a sequence {fn} of elements in a normed linear
space X is said to be complete (also "closed' in the literature),
if ¢ =0 is the only ¢ ¢ X* satisfying d)(fn) =0 (n=1,2,3,...).
There is a vast literature (see, e.g. Levinson [8]) on particular com-
plete sequences in various concrete function spaces. In many cases,
the completeness of a sequence in a special function space is a con-
sequence of certain uniqueness theorems for entire functions of ex-
ponential type, or more generally, for functions regular and of
exponential type in a half-plane (cf. Boas [2; p. 234-237]). A typical
uniqueness theorem for such functions states roughly that a function
with certain growth properties must vanish identically if it has, in
a certain sense, too many zeros (see [2; Chap. 9]). There are
more general uniqueness theorems which state that a sequence of
suitably separated points at which the function takes very small
values has the same effect as a sequence of zeros. Of this type is,
for instance, a uniqueness theorem of Cartwright [3] (see also [2;

p. 166]). This second type of uniqueness theorem leads us to the

following definition of closure property in an abstract (real or

0
-“

&
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complex) normed linear space X,

Given a sequence {an} of non-negative numbers, a sequence

{fn} of elements of X 1is said to be {a.n}—complete, if ¢ =0 is the

sk
only ¢ ¢ X satisfying all inequalities |¢(fn)| <a, (n=1,2,3,...).
To form {an}-complete sequences from a given complete

sequence, we have

THEOREM 3. Let {gn} be a complete sequence in

a Banach space X such that
1

g, M=o <.
n—>w0

Let {zn} be a sequence of numbers (real or complex

according to whether X is real or complex) such that

0< |z <o (n=1,2,3,...); lim z_=0;
n n
n—>»>0
and let
.
| f = ;_]ozkg (n=12,3 )
n k=] B k

Then for any sequence {an} of non-negative numbers
satisfying al/n=0(lz [), the sequence {f } is {a_}-
n n'”’ n n

r| complete.
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As special cases of Theorem 3, we mention

PROPOSITION 1. Let the coefficients of a power series
)

k
F(z)= X C1Z be all real, and let r > 0 be its radius of con-
k=0 ©
vergence, Assume that X 7 =, where k1 <k, 6 <...<k
n—lkn 2 n

< ... is the sequence of all those integers k >1 for which

¢, # 0. Then for any two real sequences {tn }s {an} such

k
. 1/n
that 0< [t |<r, lim t =0, a >0, a =0O(|t_[), the
n n n— n n
n—->0

sequence of functions {F(tnx)} is {an} -complete in the
real Lebesgue space LP(O,l) for every p >1. In case
<, # 0, this is also true for the space C(0,1) of all real

continuous functions.

PROPOSITION 2. For any two real sequences {tn } {a.n}

suchthat t #0, lim t =0, a_ >0, al/n =O(lt l), the N
n n n — n n 3
n—>w 2 5 _
sequence of functions {fxp (- =+ 2t x -t )} is {a _}- A
2 n n n "

complete in the real LZ(-oo, +0).

Also, a generalization due to Boas [1] of Lerch's theorem is

a result concerning {an}—cornpleteness.

Using Theorem 2, we can prove the following result which

characterizes the {an}-completeness by a certain approximation

-«

&
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property,

THEOREM 4. Let {an} be a sequence of non-
negative numbers. A sequence {fn} of elements in a
(real or complex) normed linear space X is {an }-
complete, if and only if, for any g ¢ X and for any
z > 0, there exist a finite number of coefficients
ClaCprevenc (real or complex according to whether
X 1is real or complex) such that

m m
Ilg-n)il cn£n||<s, n}illcnlan< €.

As application of Theorem 4, we have

PROPOSITION 3. Let f be a function regular in
|z] <1 such that
ar
1 ie, ;2
T’-;é lf(Pe )|"de<M  for 0<p<l,
where M is independent of P For any ¢ > 0, and for
any given complex sequence {zn} with 0 < lznl <1,

lim z = 0, there exist a finite number of coefficients
n—>c0

Cl’ CZ’ e cm such that
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27 . m c 2 m
Zi' ) |f(ele)-— z ——L—-I d6<sz, Z e | <.
4 n i6 n
0 n=1 zn(l-zne ) n=1

Using Theorem 4 and the uniqueness theorem of Cartwright

mentioned above, one can prove

PROPOSITION 4. Let a, b be real and |a| <b. Let
{)‘n} be a positive increasing sequence of maximum density

greater than L and such that ) - x_>6>0. Then for
T n+ n—

1

any function f in the complex L(a, b) and for any € >0,

n > 0, there exist a finite number of coefficients <

cz,...,cm such that
b m m
[ |ft) - & cexp((n +it)ha )|dt<e, I |c |<e.
n n n
a n=1 n=1

(For maximum density, see Pdélya [10].)

The following theorem involves another type of complete-

ness,

THEOREM 5. Let {fn} be a sequence of elements in a ‘
normed linear space X, and let {an} be a sequence of

&
non-negative numbers. If, for ¢ € X , the inequalities
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[qS(fn)l Sa, (n=1,2,3,...) imply ||¢|]< 1, then for

any g e X with Hg” =1 and for any & > 0, there
exist a finite number of coefficients Cl’ CZ’ eeenC such
that
m m
Hg—nf‘;l cnfn||.< €, z Icnlan<1.

n=1

A well-known theorem of Paley-Wiener [9; p. 100-108] con-
cerning ordinary completeness in a Hilbert space has been gener-
alized by several authors. Using a result on linear inequalities

[5; Theorem 22], we can prove the following theorem of Paley-Wiener

type for {an }-completeness.

| THEOREM 6. Let {f }, {g_} be two sequences of
elements in a normed linear space X. Suppose that
there exists a number )\, O <A< 1, with the property that

m m

12 et -g)ll<allZ ctll

n=1 n=l1
holds for any finite set of coefficients . If, for some
sequence {a.n} of non-negative numbers, {fn} is {an}—

complete, then {gn} is also {an}—complete.
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For a Hilbert space, we have

THEOREM 7. Let {fn}, {gn} be two sequences of
elements in a Hilbert space H. Suppose that for any

finite set of coefficients c. the inequalities

m m m
Pl el 112 e ll<pll 2 el

n=l n=l
m m m
2 2 2
llnzz1 c (£ -g )" <] I,fl c £ [+ Iln‘zl c g |l

hold, where Pl > 0, PZ > 0 are two fixed constants. Then:

(i) I {fn} is {an}-complete, s0 is {gn}.
(i1) If {fn} is complete orthonormal in H, then
{gn} admits a biorthonormal sequence {hn} and every

elément ue¢ H has the expansions

0 P
u= X (u, hn) g, = z (u, gn) hn.
n=l n=1

Oak Ridge National Laboratories
Oak Ridge, Tennessee

Notre Dame University
Notre Dame, Indiana
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FUNCTION ALGEBRAS

A, M. Gleason

1. INTRODUCTION

By a function algebra we shall mean a semi-simple complex
Banach algebra with the spectral norm. To any Banach algebra we
can associate a function algebra by dividing out the radical and com-
pleting in the spectral norm. Thus it appears that, although
function algebras are only a special class of Banach algebras, a
structure theory for function algebras would be a very long step
towards a structure theory for general Banach algebras. We cannot
hope for such a theory in the foreseeable future, so it is appropriate
to study function algebras satisfying various additional conditions.

To begin with we shall restrict ourselves to separable
algebras with a unit, and a subalgebra will always be as sumed to have
the same unit. Let A be a function algebra and let H be the set of
all homomorphisms of A into the complex numbers C, that is, the
set of all elements of A* (dual space) which are multiplicative as -
well as linear. If H is assigned the weak star topology as a subéet
of A*, then it is well known that H is compact. Furthermore, the
elements of A can be regarded as continuous functions on H, and
this identification embeds A isometrically as a subalgebra of C(H),
the algebra of all continuous complex-valued functions on H. For

k3
%
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any subset X of H, A can be mapped homomorphically into
C(X) by restriction; this map will generally be norm-diminishing,
but it is known that there is a least compact subset B of H
called the Shilov bounc{ary such that A is isometrically embedded
in C(B). In what follows we will use the letters H and B for
the set of all homomorphisms and the Shilov boundary without
further introduction.

A function algebra A is said to be finitely generated, more
specifically n-generated, if there exists a finite set {zl, cees zn}
of elements of A which generate a dense subalgebra of A. In this

case the mapping
h — [h(zl), e ,h(zn)]

of H into C" isa homeomorphism. If we denote the image set by
K, then A can be regarded as an algebra of continuous functions
on K, and in fact A is the closure in the uniform norm of those

functions on K obtained by restricting the polynomial functions

n

of C,

If A has one generator, then it is known that K can be
any compact set which does not divide the plane, and Mergelyan has

shown that A contains every function which is continuous on K

II-214
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and analytic at all interior points of K. One of the central object-
ives of the theory of function algebras is an analogue of Mergelyan's
theorem; in this paper we will discuss certain facts which may lead

toward this objective.

2. THE METRIC TOPOLOGY OF H

The set H has usually been considered with the weak star
topology. While this has the advantage that the resulting space is
compact, examples indicate the norm topology of H as a subset
of A* is very significantly related to the analytic aspects of the
algebra A.

If h,h, ¢ H, then we have |In, - h, | | < | [hlll +{1n,11 = 2.
If A is the algebra of all continuous functions, then

||, - h2| | =2 for every pair of distinct homomorphisms. At the :

1

other extreme, suppose A is the algebra of continuous functions on ':”‘?f

e

4

-

the closed unit disk which are analytic in the interior. The homo- |
morphisms are precisely the point valuations of the functions and
we find ||h) - h,|| <2 if and only if h; and h, both correspond
to interior points of the disk (assuming hl + hz). Moreover, it
follows easily from Schwarz's lemma that the interior of the disk

*
is embedded homeomorphically in A in the metric topology.
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For the general case of an algebra with one generator we can regard
H as embedded in C; in this terminology, we find that

|l - h,[| <2 (for distinct h),h,) if and only if h and h, are

in the same component of the interior of H, and each component of
the interior is embedded homeomorphically. (The author's proof

of this depends on a topological question which he has not yet fully
clarified.) These examples should show the importance of the

following:

2.1, CONJECTURE. If A is a function algebra and
if, for every two homomorphisms, | lhl - hzl | = 2, then

A is C(H).

Although the author has been unable to prove this, the follow-

ing theorem leads us to some interesting insights.

2.2, THEOREM: In any function algebra, if

|In) -h,|| <2 and |[b, - hy|[ <2, then ||h -h,]| <2

In other words, the relation ] Ih1 - hzl | < 2 is transitive,
Since it is trivially symmetric and reflexive it is an equivalence

relation. We shall call the equivalence classes of this relation parts
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of H. Each part of H seems to be in some weak sense an analytic
variety.

Let ¢ be a map of the open unit disk D into a Banach
space V. There are apparently several notions of analyticity

for such a map, for example

1) ¢ty =X Vit1 where t ¢ D, v, € V and the series converges

in the norm for all t.

*
2) f*¢ is an analytic function for all fe V .
If V is a conjugate space, say V = W, then we may demand that
3) t —> ¢(t)(w) is an analytic function for all w e W.

All of these notions coincide (and the same is true for analytic
functions of several variables).

Suppose that ¢ is an analytic map of D into A’e< with range
in H. It follows immediately from Schwarz's lemma that the range

lies in a single part of H. We conjecture a converse of this fact.

2.3. CONJECTURE. A necessary and sufficient
condition that hl and hZ be in the same part of H is
that h1 and h2 can be connected by a finite chain of anal-
ytic images of the unit disks.

[
]
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The sufficiency of this condition follows from theorem 2.2
and the previous remarks. A proof of the other half would have a
number of interesting consequences, among them the existence of
point derivations at any homomorphism which is in a part of H
containing more than one point.

A point derivation at h is a linear map ¥ of A into C
satisfying the relation y(ab) = Y(a)h(b) + h(a)¥(b) for any two elements
a and b of A. Suppose ¢ is an analytic map of the unit disk into
H which is not constant, and say ¢(0) = h. Then the map A —> fa
where fa(t) = ¢(t)(a) is a homomorphism of A into the algebra of
bounded analytic functions on the open disk and the usual point deriva-
tion at 0 (i.e. f —> f'(0)) on the latter algebra induces a point
derivation on A at h.

Examples such as we discussed above show that the parts of
H are frequently analytic varieties, but sometimes the situation can
be more complicated. In the space ct let K = {[w, z]: |z| <1,
w=0 or w =§ for some integer n}; K is the union of a countable
family of ordinary disks which meet at the origin. Let A be the
closure of the polynomial algebra on C2 in the uniform norm computed

over K. The map h —s [h(w), h(z)] (here w and z are the ele-
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ments of A corresponding to the coordinate functions of CZ) carries
H onto K and it can be checked that the parts of H are the single
points for which |z[ =1, with all the rest (i.e. |z| <1)in a single
part. Furthermore, the mapping is a homeomorphism of each part;
hence the one non-trivial part is not an analytic variety in the usual
sense although it is a union of varieties. Probably more complicated
cases can be found.

Let P be a part of H. The elements of A can be regarded
as bounded functions on P. Designate by AP the set of all functions

on P which are pointwise limits of uniformly bounded directed

systems of functions from A. The set A_ is a Banach algebra and

P

it seems appropriate to call its members the bounded analytic

functions on P. (In case A 1is the algebra of functions continuous

on the closed unit disk and analytic in the interior and P is the ¢
I3

interior part, then AP is exactly the algebra of all bounded analytic A

functions on the unit disk), L

-

Assuming the validity of the remarks just preceding 2.1,
about the parts of an algebra with one generator, Mergelyan's

theorem can be stated as follows:

3
*

H
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THEOREM OF MERGELYAN: If A is a function algebra
| with one generator then a necessary and sufficient condition
that a function f defined on H should be in A is that

1) £ is continuous with respect to the weak star topo-

logy of H.

and

2) for each part P of H, f restrictedto P is in AP.

Since this statement makes sense for any function algebra,
it may be that the proper analogue of Mergclyan's theorem is
obtained simply by deleting the words ''with one generator' and
possibly replacing with the words '"with a finite number of gener-
ators'., It is easy to verify this conjecture for the function
algebras obtained by norming the polynomial algebra on certain

domains such as smooth polycylinders.

3. DIRICHLET ALGEBRAS
A Dirichlet algebra is a function algebra for which the bound-
ary fits smoothly into the space H, in such a way that we can solve
the analogue of the Dirichlet problem in harmonic functions. It

appears that this class of algebras is of considerable importance and
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is amenable to analysis.

Let A be a function algebra which we regard as made up of
functions on H. The real parts of these functions and the functions
uniformly approximable by such functions will be called harmonic
functions on H. Since the harmonic functions achieve their norms
on the Shilov boundary B, each real continuous function on B is
the restriction of at most one harmonic function. We shall say that
is a Dirichlet algebra if every real continuous function on B is the
restriction of a harmonic function on H.

That Dirichlet algebras exhibit less pathology than the

general function algebra is seen in the following theorem.

3.1. THEOREM: In a Dirichlet algebra, H is connected

in the weak star topology if and only if B is.

If K is a compact subset of c™ and A is the function
algebra obtained by completing the ring of polynomial furctio:s on
c" in the uniform norm over K, then we shall say that K is a

Dirichlet set if A is a Dirichlet algebra. It is well known that any

region in the plane with smooth boundary is a Dirichlet set. The

algebras considered by Arens and Singer (Generalized analytic

functions, Trans. Amer. Math. Soc., Vol. 8l (1956), pp. 379-393)

-2
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are Dirichlet algebras. Other examples can be given which are, in
effect, continuous direct sums of these elementary examples.

Any homomorphism h of A has an integral representation
in terms of a positive real Radon measure u on B, obtained simply
by extending the linear functional h over all of C(B). If A is
a Dirichlet algebra, the measure u is unique among real measures,

for no real measure annihilates A.

3.2. THEOREM: Let h1 and h2 be homomorphisms of

a Dirichlet algebra A and let p:, and i, be the corres-

1
ponding real measures on B. Then | lhl - hzl l <2 if

and only if £y and p, are absolutely continuous with
respect to one another. Moreover, if the condition is satis-

fied, then the Radon-Nikodym derivative of My with respect

to Ky is bounded.

For each homomorphism h with corresponding measure pu,
there is a least compact subset X of B which supports pu; it may
be characterized as the set of all points of B all of whose neigh-
borhoods (weak star topology) have positive u measure.®
Theorem 3.2 implies that the set X is the same for all homo-

morphisms in the same part of H.
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Let ho be a homomorphism of the Dirichlet algebra A, and
let Hy and Xo be the corresponding measure and its support set.

We can introduce a new norm into A by

| ]A] lo = sup {lh(a)|: he Xo}.

Dividing out the ideal of functions which vanish on X0 and complet-
ing in the new norm we get a function algebra Ao. Let H0 and Bo
be the set of homomorphisms for Ao and the boundary, respect-
ively. Since A0 contains a continuous homomorphic image of A,
every member of Ho induces a homomorphism of A by compos-
ition and this provides us with an embedding of Ho into H. With
this identification B0 becomes XO and Ho can be characterized
as the union of all parts of H for which the support set is con-
tained in Xo. It follows that AO is itself a Dirichlet algebra, and
that the metric for H0 computed in Ao* is the same as that com-
puted in A*. We have thus come to the consideration of a
Dirichlet algebra such that the entire boundary is the support set
for some homomorphism. Such an algebra we shall call primitive,
and such a homomorphism, or the part containing it, we shall call
primary. The foregoing argument shows that any homomorphism
can be made primary by passing to a suitable quotient algebra.

i
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3.3 THEOREM: In a primitive Dirichlet algebra, any

function which is real on the boundary is constant.

Let A be a primitive Dirichlet algebra and let f be a real
function on B which is the real part of some function a in A.
Any two functions in A having the same real part on B differ by
a coustant by theorem 3.3, so that if ho and h1 are homo-

morphisms, Im(hl(a) - ho(a)) is determined by f,

3.4, THEOREM: If h.l and ho are in the same part of
H, then the map { — Im(hl(a) - ho(a)) defined above is a con-
tinuous linear functional and has a unique extension over the
space of real continuous functions on B. Moreover this linear
functional is represented by a real measure on B having the

same null sets as the measure representing ho.

Previously we assumed that each real function on B had a
harmonic extension over H; now we see that we can define its har-
monic conjugate which is determined up to an additive constant on
each part of H. The harmonic conjugate is continuous when H is
assigned the norm topology, but of course it may be unbounded.

Consider now a primitive Dirichlet algebra A, a primary

I1-224
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part P and the measure pu associated with one of the homomorphisms
in P. We can form the space M of (classes of) bounded
,uo-measurable functions on B with the essential supremum as

norms. JSince ”o is a Borel measure, continuous functions are
po—measurable, so that C(B) is naturally mapped into M. This

map is an isometry since Mo assigns positive measure to every

open set. Moreover, M is a conjugate space and, because By is
regular, the image of C(B) is weak star dense in M, The algebra

A is also embedded in M (via its embedding in C(B)) and has a

weak star closure A,,. We can extend each element f of AM

M

over P by the integral representation formula

£(h) = J £(b)du(b)

B

where u is the measure on B corresponding to h. (We know that, ‘!
for h ¢ P, du = ¢- duo where ¢ is an L1 function.) This gives us <3
a mapping of AM into a class of functions on P and it can be
shown that it is a homomorphism of AM onto AP (as defined in
§2). It seems quite likely that this map is actually one-to-one, but
the author cannot prove this. Assuming this is so, then the

measurable functions of AM are the "boundary values'' of the

b

%
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analytic functions of AP, and a theorem similar to Fatou's theorem p
for the unit disk seems likely. These conjectures depend largely
on showing that P has sufficiently many points, and this, in turn,

is closely related to conjecture 2.1.

¥*
*

e
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FATOU'S THEOREM FOR GENERALIZED
ANALYTIC FUNCTIONS

Kenneth Hoffman

1. INTRODUCTION
In this paper, we shall extend the following theorem of Fatou
[3; p. 147] from the class of analytic functions in the unit disc to
certain classes of generalized analytic functions studied by Arens

and Singer [2].

THEOREM 1.1. Let F be a bounded analytic

function in the unit disc, |z] < 1. Then

19) = lim F(rele)

r—>1

F(e

exists for almost every ¢, and
e, 1 2" gt
F(re' ") =5= [ F(e) P_(6-t)dt '
27 0 r

where P is Poisson's kernel. .
r

This result will not be established in the full generality of [2],
but in the '"archimedean-ordered and discrete'' case of that paper.
We begin by summarizing briefly the results of [2] which will be

needed here.

By
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Let G be a subgroup of the additive group of real num-
bers, considered as a discrete topological group, and let G+
denote the set of elements in G which are not less than 0.

Let A Dbe the set of all characters of G+, i.e., homomorphisms

of G+ into the unit disc of the complex plane. We make A

into a topological space, using the topology of uniform converg-

ence on compact (finite) subsets of G+. It r is the character

group of G, each element of l— determines a homomorphism of

G+ into the disc, and the so determined (one-one) embedding of

I— in /A is a homeomorphism of I— with a closed subset of A .
In the classical case, when G is the group of integers, the

space A is (homeomorphic to) the unit disc and l— is the unit

circle.

Each element ¢ in /A is uniquely representable in the
form
(1.11) L =pa

where p is a non-negative element of A and a isin l—
The ''disc" [ contains a point go, which we shall call

the origin of [, defined by

l
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(1. 21) & (x) =

At times, we shall write simply { =0 to mean { = z_,o.
If p is a positive element of A, 0< p(x) <1, there is a

positive real number r, 0<r < 1, such that
(1. 31) P(x) =r .

The correspondence determined by (1. 31) is a homeomorphism
between the real segment of A and the unit interval (0, 1).
Consider the Banach algebra LI(G)’ the multiplication
being
(fxg)(x) = [f(x-y)g(y)dy
G

and the norm

L€l 1] = Jlitx) | ax.
G

Let A1 be the subalgebra of Ll(G) consisting of those functions.

f which are supported on G+. Let H(Al) be the space of complex

homomorphisms (regular maximal ideals) of the algebra Al' Each

element h of H(Al) is uniquely representable in the form

11-229
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(1. 41) h(f) = [ f(x)¢(x)dx
G

F

for some { in A . Conversely, given any ¢ in A, (1.21)
determines an element h in H(Al). The one-one correspondence
determined by (l.2l) is a homeomorphism of [ and H(Al). We
thus identify A and H(Al) and may refer to an element of A

as a character of G+ or a homeomorphism of Al'
The standard Gelfand theory now tells us that each function

f in A1 determines a continuous function £ on A by

(1. 51) fe) = [ fx)t(x)dx.
G

+

In the classical case, the representing functions £ are
those functions continuous on the disc A, analytic in the interior,
such that the restriction of ¥ to [— has an absolutely convergent
Fourier series.

For the algebra Al’ [_ is the Silov boundary of the space
of maximal ideals A . That is, for each f in Al’ the maximum
modulus of /f\ is taken on the set [_; and r is the unique minimal
closed set in A having this property. Because of this general
maximum modulus principle, there is, for each ¢ in A, a

regular Baire measure m_, on r such that for every f in A

4 1
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(1. 61) R = f?(a)mg(da).
[

If ¢ = pa, we have

N

1. 62) floy = [ Rapimy(ap)
[

The formula (1. 62) generalizes the familiar Poisson integral repres-
entation of the classical situation.

If TI- is the closed half-plane Re (w) > 0, each positive P
P# 1, in A determines a continuous mapping of TT into A.

We map the complex number w into the element Pw defined by
W
(1. 71) P (x) = exp [w log p(x)].

The mapping defined in (1. 71) maps the imaginary axis of
_IT into the character group r The representation (1. 31) of
any P in A makes it clear that the image of the axis under this
mapping is the same subgroup of r for each p, 0< P<Ll. We
shall call this subgroup €. As Arens and Singer showed, Q -
is a dense subgroup of r; also, unless G is (isomorphic to) the
group of integers, & has Haar measure zero. It is perhaps well
to normalize our notation in 2, defining Q as the set of all
characters in [_ of the form

&
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(1. 81) o (x) = e V%,
v

The "harmonic'' measures mF, f‘ > 0, determined by (1. 61),
are supported on the subgroup . Indeed, if 0<p <1, then for

each bounded Baire function ¢ on [

1 2 v 21
[$aimda) =5 | sip™ 100" e,
r -0

Or, using (1. 81),

(o o]
(1. 91) [ $axm (da) = [ (o )C (V)dv
oo

where u = -log p and Cu is the Cauchy density
2 2.,4-1
(1.92) Cu(v) = ufzr(u+v )] .

One useful conclusion from (1. 91) is that the measures mP,
0 < <1, are mutually absolutely continuous.

We conclude our brief review of a portion of the Arens-
Singer results by observing that for each f in the algebra A1

. A utiv, . .

(and for each P 0<p< 1) the function f(f ) is holomorphic
for u positive, and continuous and bounded on all of the half-plane
TT. These functions are in fact almost periodic; however, no use

will be made of that fact in this paper.
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2. THE HARMONIC MEASURES
The origin go of the disc A (1.21) has as its correspond-
ing harmonic measure the Haar measure of the character group [—
In this section, we shall establish a useful relation between Haar

measure on r and the harmonic measures m

o L L
Let xo be a non-zero element of G+. Let Z be the

compact subgroup of r consisting of those characters a for

which a(x )} = 1.
o

THEOREM 2.1. The character group | is locally .

isomorphic to the direct product of the unit circle,

|z| =1, and the subgroup Z.

3 Proof. By isomorphism, we of course mean topological

isomorphism. Consider the neighborhood W of a, of the form
W = {o.; a(xo) # -o.o(xo)}.

t Then there is a one-one correspondence between W and the product

U X Z, where U is the open subset of the unit circle obtained by
ito
1> deleting that number e such that o, (xo) = —ao(xo). The corres-
. o
pondence is a ¢ (elt,ﬁ), where t is the unique real number

2
between 0 and ;{—7{- such that a(xo) =o.t(x0), and B is the element
o

oy
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a at_l in Z. This is clearly an algebraic isomorphism; we need
only verify that the topologies are the same. But, this is a routine
verification, which we shall omit.

Note that, according to the proof of (2.1), two direct pro-
duct neighborhoods will cover l— It now follows that, except for

a normalization, the Haar measure of r is locally the product

of the Liebesgue measure on the circle and the Haar measure of the

compact group Z [l; theorem 2.3]. In the notation of (2.1), we may

then state that for any bounded Baire function ¢ on [_

(2.21) [$(a)da = K [ [ ¢(a p)dt dp
W Z U

where K is a constant of {measure) normalization.

We now establish our result connecting the harmonic measures

on l_.

THEOREM 2.3. Let S be a Borel setin [ andlet p
be an element of A , 0< p <l If for each a in [_

we have m CL(S) = 0, then S has Haar measure zero.

Proof. Let kS be the characteristic function of the set S.
Again with the notation of (2.1), we may apply the Fubini theorem

to (2. 21) to conclude that
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(2.31) | kgla)da =K [dB | k_(a B)dt.
W S 7z U Stt
Hence,
(2. 32) f ks(a)da < K max ks(atﬁ)dt = K max M(S,)
w B U P P
where SB =UX {B} and M is Lebesgue measure on the circle.
Now
(2.33) mP(Sﬁ) = mfﬁ(S) =0,
By (1. 91),
oo}
(2. 34) mP(SB) = f ks(aﬁ)mp(da) = ks(avﬁ)cu(v)dv.
I— -0
As mP(S[S) =0 and Cu is a positive kernel, it is clear that
(2. 35) M(Sf’) = f ks(avﬁ)dv = 0.

U
It follows from the inequality (2. 32) that
) ks(a)da =0,
w
and since two neighborhoods W will cover |—, the Haar measure
of S is zero.
This theorem is of course trivial in the classical case, in

.
*

&
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which Haar measure is absolutely continuous with respect to each
mt;, ]gl < 1. However, in general we know that the measures mg,
¢ # Co’ are mutually singular with Haar measure, being supported

on translates of the one-parameter subgroup £ (l.8), which has

Haar measure zero,

3. THE FATOU THEOREM
The complex-valued function F on the disc A is called
analytic in the interior of A, if F can be uniformly approx-
imated on compact subsets of A - l— by functions ?, with f in
A,. We shall prove the following generalization of the Fatou

1

theorem (1.1).

THEOREM 3.1. Let F be a bounded analytic function

in the interior of A . Then

{3.11) F(a) = lim F(?a)
P—)l

exists, except on a set which has mg measure zero for

every { 1in the interior of A . Furthermore,

F(pa) = [ FlaB)m,(dp).

r P
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Proof. Let S be the set of a's in r for which

lim F(';a)

P—)l
does not exist. First, suppose { = PY 0< P< 1. We wish to show
that mg(S) = 0, Clearly we may as well assume (by rotating F
by the character '1_1) that o =1, or that ¢ = P Since the measures
mP, 0< p< 1, are mutually absolutely continuous, it is sufficient
-x

to consider the case in which p= e_l, i.e., that P(X) =e

We define a function H on the half-plane Re [w] >0 by
H(w) = F(e ).

Now H is a bounded analytic function in the half-plane. The analy-
ticity of H follows from the fact that for each f in Al the function
'f\(e-w) is analytic in w (see section 1).

As is well known, the Fatou theorem in the classical unit -
disc immediately implies that if H is a bounded analytic function in-
the half-plane, then

H(iv) = lim H(u+iv)
u—s0

exists for almost every real number v. In the case at hand,
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H(utiv) = F(e-u~ e_iv).

Now plainly

lim H(u+iv)
u—>0

exists if and only if

lim F(f)e_w)
P——)l
exists, Thus, the latter limit exists for almost every v. If ks
is the characteristic function of the set S, then

oo

1 i 2.1
fks(a)m(l/e)(da) 2 kgle ) 1vE) av.

But, as we have just observed, ks(e_lv) = 0 for almost every v.

Thus
m(l/e)(S) = 0.
This completes the proof that for { = F"l’ 0< P <1,
m,_(S) = 0,
g( )
Then, by Theorem 2.3, the Haar measure of S is zero. If the

function F is extended to r by (3.11), we clearly have
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Fipa) = | F(ap)m (df).

By arguments similar to those above, one can estab-
lish generalizations to this context of other boundary-value
theorems concerning analytic functions in the unit disc. As
one example, we mention the Riesz theorem [4] on the

existence of radial limits for analytic functions in some

Hardy class Hp'
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ON RINGS OF BOUNDED ANALYTIC FUNCTIONS

Shizuo Kakutani

1. Let D bea non-empty bounded open set in the Gaussian

Y N

plane. We do not assume that D is connected, but it is assumed

that iae boundary Bd(D) =D - D of D has no isolated point. Let
B(D) be the ring of all bounded single-valued analytic functions
f(z) defined on D. B(D) is a normed ring with respect to the norm:
(1) Hfll =||£HD= sup If(z)l. 4
zeD

The properties of this ring were discussed in [3].

The purpose of this paper is to discuss the boundary behavior
of a function f(z) from B(D) in terms of the theory of normed rings.

2. We begin with definitions and notations from the theory of

normed rings. By a ring we always mean a commutative ring with

unit 1 over the field of complex numbers, and by a homomorphism of

one ring into another, we always mean a homomorphism which maps
the unit into the unit and which admits the scalar multiplication.

A non-negative real-valued function ||f|| defined on a ring
R = {f} is called a quasi-norm if it satisfies the following conditions:
@ gl < lel] + [lells G0 1lggl] < |1el]- el |, Gio) | laf] ]

= lﬂl° l lfll for any f, g ¢ R and for any complex number a.
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(Obviously, from (iii) follows that (iv) |[1]]| =1 and (v) ||0]] = 0.)

| 1£]] is called a norm if it also satisfies the condition:

(vi) | |£f]] >0 if £#0. R is called a normed ring if |[f|[ is a

norm and if R is complete with respect to the metric d(f,g) = ||f - g|].

All norms and quasi-norms discussed in this paper satisfy the following

additional condition:
(2) L] =117, n=1,2,...

I R= {f} is a ring with a quasi-norm ||f|| defined on it,
then there is a standard way of obtaining a normed ring R* from it:
Let I be the setofall fe R with ||f|]| =0. Then I is an ideal
in R. Consider the factor ring R/I whose elements are the classes

f¥ = f + I. If we put ||f*|

* = I[fH, then ]

£

* i{s a norm on R/I,

and R%* is obtained from R/I by completing it with respect to the

metric d(f*,g*) = | [f* - g¥| l* R* is called the normed ring ob- A

I e

"

tained from R by identification and completion with respect to the

4

quasi-norm | lfl [, and 7%: f —> f* is called the natural homomorphism

of R into R,

3. Let R = {f} be a normed ring with the norm l lfl I We

denote by 2 the set of all maximal ideals M of R. For any fe R

LY
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and for any Me¢ Q, there exists a unique complex number a = (f, M)
= /f\(M) such that f -a & M. It is clear that f —> (f, M) is a contin-
uwous homomorphism of R onto the field of complex numbers and
satisfies |(f, M) | < | |£]]. We introduce the weakest topology on

Q with respect to which all functions /f\(M) are continuous on £

Q is a compact Hausdorff space with respect to this topology, and

~

is called the structure space of R.

Let C(f2) be the normed ring of all complex-valued functions
¢(M) defined on £ with the norm:

(3) lé]] = sup |o(M)].
MeQ

Then £ ——>/f\ is a continuous homomorphism of R into C(2). This
homomorphism is an isometric isomorphism if the norm | lf] | on
R satisfies the condition (2). In this case R may be considered as
a closed sub-ring of C(%).

For any f ¢ R, the spectrum off, R) of £ in R 1is def‘ined
as the set of all complex numbers A such that f - A does not have

an inverse in R. It is easy to see that

(4) o(f,R) = £(Q),
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A
where 1(2) denotes the set of values taken by ? on £.

4. We now consider the case R = B(D). We denote by
YD) the structure space of B(D). For each p e D, the set M(p)
of all fe B(D) with £(8) = 0 is a maximal ideal of B(D). M(B) is

called a maximal ideal of B(D) of type I. [All other maximal ideals

of B(D) are called maximal ideals of B(D) of type I1.] It is easy

to see that  —> M(B) is a homeomorphism of D into (D). Thus
we may consider D as a subset of Q(D) by identifying B with

M(B). Further, it is easy to see that
(5) o(f, B(D)) = C1[{(D}],

where CI[E] denotes the closure of a set E in the Gaussian plane

and f(D) denotes the set of values taken by f on D.

5. Let D1 and D2 be two non-empty bounded open sets in

the Gaussian plane, and assume that Dl D DZ'

For any f ¢ B(D,), 4
let 7r(f1) be its restriction to DZ' Then 7 is a continuous homo-
morphism of B(Dl) into B(DZ) and satisfies

(6) Hap |1, < 1l -
1 DZ- D1
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7 is called the natural homomorphism of B(Dl) into B(DZ)' [7 is

actually an isomorphism if every component of D1 contains a point

of DZ.] Further,
(7) (£ PIM,)) = (W(fl), M,)

defines a continuous mapping of Q(DZ) into SZ(Dl). p is called

the natural mapping of Q(DZ) into Q(Dl). It is easy to see that if

we consider D1 and DZ as subsets of Q(Dl) and Q(DZ), respect-

ively, then the restriction of p to DZ is the identity mapping which

embeds D. into D.. In other words, if MZ(B) is a maximal ideal

2 1
of type I of B(DZ)’ then p(MZ(ﬁ)) is a maximal ideal of type I of

B(Dl) which corresponds to the same point f ¢ DZ'

6. Let

(8) D:Dlj)DZj)...DDnj)Dn DR

+1

be a decreasing sequence of non-empty bounded open sets in the

Gaussian plane. Let

(9) B(D) = B(D,) —7;1> B(D,) — ... —> B(D_) —> B(D_
n
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be the corresponding sequence of normed rings B(Dn), where T

is the natural homomorphism of B(Dn) into B(D }on=1,2,... .

n+l

We define the limit normed ring R* = lim B(Dn) as follows: Let

n—>»oo
R be the set of all sequences f = {fn ] n=1,2,... } such that

fn € B(Dn) for all n and 7rn(fn) = fn+1 for all sufficiently large n.

(This means that there exists a positive integer n(f) such that

T (f)=1f for all n > n(f)). R becomes a ring if we define:
n'n n+l —

afz{o.fn]n:l,Z,...}, ttg={t +g_|n=12,...} and fg - e

n=1,2,...} if f:{fnlnzl,z,...} and g={g_[n=1,2,...}.

If we put Hfll*z lim HfHD , then HfH* is a quasi-norm on R.
n—soo n

The limit normed ring R* 1is then obtained from R by identification

3k
and completion with respect to the quasi-norm l [£] | . We denote

2

by 7% the natural homomorphism of R into R*. Then this defines

a homomorphism 7rn*: fn — 7 *(f{ ) = 7¥(f) of B(Dn) into R,
where f = {fn I n=1,2,.. } is an element of R which satisfies

f =0 for k=1,2,...,n-1, and 7

> *
K for all k_n. T .

k) = fy

is called the natural homomorphism of B(Dn) into R*.

Further, let

(10) Q(D) =Q(D,) «= Q(D

1 Z)e—... <—§2(Dn)<—Q(D

Pl Pn n+l

be the sequence of structure spaces Q(Dn) which corresponds to (9),
M
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where Pn is the natural mapping of Q(D‘n+l) into Q(Dn), n=1,2,... .
Since each Q(Dn) is compact and since each Pn is continuous, we
obtain the inverse limit space Q% = lim Q(Dn) as follows: %

n-——>00

consists of all sequences M%¥* = {Mn I n=1,2,.. } such that

Mne Q(Dn) and Pn(M Mn for all n. Let Pn>r be the mapping

n+l) -
of @ into Q(D_) defined by P(M¥) = M_ if M* = {M_|n=12..}
The topology of % is then defined as the weakest topology on 2%

with respect to which all mappings Pn'r are continuous. It is easy

to see that % becomes a compact Hausdorff space with respect to

this topology. % is called the natural mapping of Q% into
P gy Pn pping

Q(Dn), n=1,2,....
THEOREM 1: ©* is the structure space of R*.

The correspondence between R* and £* is given as follows:
Let M be a maximal ideal of R*, Then ¥ — (f*, M) is a continu-
ous homomorphism of R* onto the field of complex numbers which
satisfies I(f*,M)l < | |£*]]*. For each n, fn — (7rn*(fn),M) is a
continuous homomorphism of B(Dn) onto the field of complex numbers
and satisfies I(ﬂn*(fn), M) | < | lfnl ID . Consequently, there exists
n

a maximal ideal M of B(D_) such that (r_*(f ),M) =(f ,M ). It
n n n ''n n’ ' n

is easy to see that Pn(Mn+1) = Mn for each n and hence
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M* = {M |n=1,2,.. } determines an element M%* of %,
Conversely, let M¥* ='{Mn I n=1,2,.. } be an element of
Q*. Then, for each n, fn — (fn, Mn) defines a continuous homo-
morphism of B(Dn) onto the field of complex numbers which satis-
fies I(fn,Mn)I < I |fn| IDn. It is easy to see that (fn,Mn) = (Trn(fn),
M ,)) forany f ¢ B(D ). Thusforeach f={f [n=1,2,...}¢R,
lim (f ,M_) exists since (f ,M ) is independent of n for
n’ ' n n’ 'n
n—>»Q
n > n(f). Let us put (f, M%) = lim (fn,Mn). Clearly, f —> (f, M%)
n—>00
is a continuous homomorphism of R onto the field of complex num-
bers and satisfies |(f, M) | < l Ifl |*. It is then easy to see that

there exists a unique maximal ideal M of R* such that (rx(f), M)

= (f, M*) for any f ¢ R, where 7% is the natural homomorphism of

R into R*,
THEOREM 2:
4
o) loo) “
(11) o(rxif), R*) = [ o, BD) = M) cift_(0 )] ,
n=n({f) n=n(f)

if £={t |n=1,2,...} ¢R and £ ¢ B(D ) forall n,
n n n

and 7 (f ) =f for all n > n(f).
n n n+ -

1

4
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7. Let D be a non-empty bounded open set in the Gaussian
plane, and let { be a point from the boundary Bd(D) of D. Let
f ¢ B(D). A complex number 7* is called a_li_r_nﬂy_alle_g f at ¢
if there exists a sequence {zn I n=12,.. } of points from D
such that lim z = { and lim f(zn) =7>-'<. The set of all limit

n——> n—>00

values of f at { is called the limit set of f at { andis denoted

%
by r (£, £). r*(f, t) is a non-empty compact set and is given by

. te'e}
a2) .0 = N clD ),
n=1
where
(13) Dn={zlst, Iz-—(,l<1/n}, n=1,2,....

A complex number ¥* is called a double limit value of f

at { if there exist a sequence {Cn I n=12,.. } of points from
Bd(D) and a sequence {Yn* [ n=12,.. } of complex numbers such

3 . .
that ¢ # ¢, 7, ¢ [, Qn) for all n, lim ¢ =1¢ and lim 7 *
n—00 n—>>0o
= %%, The set of all double limit values of f at { is called the

double limit set of f at { and is denoted by | (50). [ (£0)

is a non-empty compact set and is given by

@ Meo=-Nal U N axh,

2=1 m={+1 n=m+l
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where

(15) A = {2z | z ¢ D, d(z, BAD) <1/n, 1/m < |2-¢] <1/4}

£,m,n

n=m+l, m+2,...;m =42+, £+2,...; £ =1,2,... .

The following theorem has been proved by F. Iversen [2],

A. Beurling [1] and K. Kunugui [4]:

THEOREM 3:
(16) 0D Mo,
(17) Ba([" (£, ) C B[ (£, 1)

for any f ¢ B(D).

We shall show that this theorem can be interpreted as a

result concerning the spectrum of an element in a normed ring.

« lgr
Pl

.
4
..

8. We now apply the results of section 6 to the case when
Dn is given by (13). Theorem 2 shows that the limit set |—=':(f, t)-
is obtained as the spectrum of a certain element in R*, The

following formulation of the same result is more useful for our

purpose:
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Let R' be the ring of all bounded complex-valued functions
f(z) defined on D with the property that there exists a positive
integer n such that f(z) is analytic on Dn’ where Dn is given

by (13). R' obviously contains B(D) as a subring. If we put

(18) €] = Tm |f(e)] = lim [ ]£]]5
zZ —>00 n—>00 n
then |[f]||* is a quasi-norm on R'. Let R* be the normed ring

obtained from R' by identification and completion with respect to
this quasi-norm ||f]]|*, and let 7* be the natural homomorphism

of R' into R?%*,
THEOREM 4.
(19) o(a*(f), R*) = [ (£, 1)

for any f e B(D).

9. Let R'" be the ring of all bounded complex-valued
functions f(z) defined on D with the following property: there
exists a positive integer £ such that for any integer m > { there

exists an integer n > m such that f(z) is analytic on A

where A

{,m,n’

C " . .
¢ m,n is given by (15). R" obviously contains B(D) as
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a subring. If we put

(20) [[£]|#%* = 1lim lim [f(z)| = lim  lim  lim ||f] ]A
' — z—>L! {—>00 m—>0 n—00 L,1
then l |f] |** is a quasi-norm on R'". Let R** be the normed ring

obtained from R' by identification and completion with respect to
this quasi-norm | |f] ]**, and let 7** be the natural homomorphism

of R' into R*%*,
THEOREM 5:
ok
(21) o(mrx(f), R¥*) = [ (£, ¢)

for any f ¢ B(D).

10, It is now easy to show that Theorem 3 follows from .

Theorems 4 and 5. We first observe that R' is a subring of R", 3

and that
(22) el 1% = |]g] |

for any f e R'. This fact was proved, for example, in K. Kunugui
[4]. This means that 7%(f) —> 7%*(f) is an isometric and isomorphic

mapping of 7%(R') into R**, Since 7%*(R') is dense in R*, this

W
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mapping can be extended uniquely to an isometric isomorphism of
R* into R**, Thus we may consider R* as a closed subring of
R*%, and Theorem 3 is equivalent to the following well known

result in the theory of normed rings:

THEOREM 6: If R* is a closed subring of a normed

ring #*% (having the same unit as R¥*), then

(23) o(f, R*) D o(f, R¥*)

(24) Bd(o(f, R*)) C Bd(o(f, R*%))
for any f e R*,

(23) is an immediate consequence of definition, and (24)
follows from the fact that, if we denote by G the set of all ele-
ments of R¥ which have an inverse in R%*, then G is open and
every boundary element of G is a generalized null divisor of

R* (C. E. Rickart [5]).

Yale University
New Haven, Connecticut

I1-252




< SHIZUO KAKUTANI

BIBLIOGRAPHY
Beurling, A., Etude sur un probléme de majoration, These,
Upsal, 1933.

Iversen, F., Sur quelques propri€'tés des fonctions monog®nes
au voisinage d'un point singulier, Olv., af Finska Vet. Soc.
Férh, 58 (1916), Num. 25.

-Kakutani, S., Rings of analytic functions, Lectures on Functions

of a Complex Variable, Ann Arbor, Mich., (1955), pp. 71-83.

Kunugui, K., Sur un théoré¢me de MM. Seidel-Beurling, Proc.
Acad. Tokyo, 15 (1939), 27-32.

Rickart, C. E,, On singular elements in Banach algebras, Duke
Math. J. 16 (1947), 1063-1077.

~




DERIVATIONS OF BANACH ALGEBRAS

Irving Kaplansky

Derivations of algebras, and in particular Banach algebras,
arise in a variety of ways and merit systematic study. In this
paper I survey briefly the known results, add some new ones, and
mention some open problems.

The first question that appears to have been raised is the
following: is every derivation of a commutative semi-simple
Banach algebra identically zero? For continuous derivations this
was proved by Singer and Wermer. A neat account by Kleinicke

[1] is now available. It is basedona purely algebraic lemma.

LEMMA. Let ' be a derivation of a ring A, and x

an element in A with x'" = 0. Then (xn (n) =n! (x' )n.

The proof is easily given by induction and Leibnitz's rule.

THEOREM 1. If ' is a continuous derivation of a Banach
algebra A, and x is an element with x' = 0, then x' is

generalized nilpotent.

PROOF. Let K denote the bound of '. Then by the lemma,
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2] < g2 [x"] | /a2,

e PR < k]3] YR ™

e Letting n —> o we see that the right side approaches 0,

whence the left side does so too.

3 The next result was conjectured separately; it is a generaliz-

ation of a theorem of Jacobson.

THEOREM 2, If in a Banach algebra ab - ba commutes

‘ with a, then ab - ba is generalized nilpotent.

PROOF. Let ' denote the inner derivation by a. Then

b" = 0 and we apply Theorem 1.

THEOREM 3. Let ' be a continuous derivation of a Banach
algebra A, and x an element of A commuting with x', Then
x' 1is generalized nilpotent, 'g‘
&
’;'—.&
PROOF. We pass to the Banach algebra of bounded opera.to:;s’
on A, Write D for ', Rx for right-multiplication by x. Then
DR _-R _D=R_, which commutes with R . By Theorem 2, R
X X x X X

is generalized nilpotent, and the same follows for x'.

<
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COROLLARY. A continuous derivation of a commutative
Banach algebra A maps A into the radical.

It is not known whether '"continuous!' can be omitted in this

corollary. We shall pose the question in a still more general form.

PROBLEM 1. Is every derivation of a semi-simple

Banach algebra continuous ?

Only scattered information is available. The answer is

affirmative for a commutative C*-algebra (Singer) and for the

o meees

algebra of C™-functions on a manifold (Arnold Shapiro). For the

algebra of all bounded operators on a Banach space all deriva-

tions are inner and a fortiori continuous. :
In all the preceding discussion we have tacitly assumed that

the derivation in question is complex linear. It has been useful to |

study ring automorphisms of Banach algebras, and a decisive

e a

result is known. We inquire whether the analogue holds for deriv-

ations,

PROBLEM II, Let D be a ring derivation of a semi-
simple Banach algebra A. Is it true that A is a direct

sum B@C where Bis finite-dimensional and D is
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‘ linear on C?

In the final theorem I shall settle both problems for the two
? simplest algebras of analytic functions. The methods can doubtless
be extended to cover more territory (several complex variables,

any manifold).

' THEOREM 4. Let A be the algebra of all bounded analytic '
functions in the open disc |z| <1, or the algebra of all
functions analytic in the open disc and continuous on its closure.

r Then any ring derivation of A is O.

PROOF. Let B denote the algebra of all functions analytic

| in the open disc (B is not a Banach algebra). The given derivation

of A may, if we wish, be regarded as a derivation of A into B,

L
Let D be any derivation of A into B. For any g in B, the map- .

L}

f ping f —> f'g is a derivation of A into B which sends z into g. 4

. n . P
We may therefore normalize so that D(z) = 0. For f = Eanz in 5»

»
* s

} we have

. D(f):D(ao)+z(...)

D(ao) + D(al)z + z2 (eo. ),
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etc. Hence D(f) = Z‘,D(an)zn. Now if D is not linear it is discon-
tinuous on the complex numbers, We can find a sequence a
rapidly approaching 0 such that D(a.n) rapidly approaches oo.
Then f is in A, but D(f) is not in B, a contradiction, Hence D
‘is linear, and is in fact 0. Returning to our original derivation of
A into itself, we find that it has the form {f — f'g for a suitable
g inh ‘B, We must now settle the following: supposing that g i.:?qt

not 0, find an f in A such that f'g is notin A, In either of

the two cases this is an easy exercise, and we suppress the details.
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THE LAPLACE TRANSFORM ON GROUPS
AND GENERALIZED ANALYTIC FUNCTIONS

George W. Mackey

1. BACKZROUND
The present note may be regarded as a sequel to another
[2] published by the author almost a decade ago. We shall begin

by recalling briefly the guiding idea of [2]. Let G be a locally

A
compact abelian group and let G be the corresponding dual or

character group; that is,the group of all continuous homomorphisms
of G into the complex numbers of modulus one. Let G be the

vector space of all continuous homomorphisms of G into the

oo
X

additive group of the real line. For each x ¢ ‘G the transpose x

A
of x 1is the continuous homomorphism of the real line into G

defined by the identity exp(itx(u}) = x*(t)(u) and the mapping

X —> x* is one-to-one from G onto the group of all such homo-
morphisms. The following conditions on G are easily seen to be
equiva‘lent: (a) e is connected, (b) G is the direct product of a
vector group and a discrete torsion-free group, (c) the union of

% A
the ranges of the homomorphisms t —> x (t) is dense in G,

(d) the intersection of the kernels of the homomorphisms in G is

the identity., We shall assume henceforth that one and hence all of

these conditions are satisfied.
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The most general continuous homomorphism of G into the
multiplicative group of all non-zero complex numbers is uniquely
of the form u —> exp(x(u))y(u) where x ¢ G andye 8 The gener-
alized Laplace transform of a (suitably restricted) complex-valued
function f on G is the function f on —C_}Xé (or a subset thereof)
defined by the formula: ?(x, y) = [ f(u)exp(x(u})y(u)du where du
refers to Haar measure in G.

If the vector space G is finite dimensional, as we shall
assume from now on, then it has the structure of a C00 manifold.
In addition 8 has certain essential properties of a Coo manifold.
Let f be a complex-valued function defined on G and let Y, and
x be points of 8 and G respectively. Then f composed with
the product of Y, and x==< is a function of a real variable and we
may ask about the existence of its derivative at 0. If this deriva-
tive exists we denote it by fx(yo). Starting from this notion it is
easy to see how to define derivatives of higher order fx % .. and

12 n

the notion of Coo function. We have a ''tangent space'' at each point
of (,Z\" and this tangent space is naturally isomorphic to G. G is
of course also a universal tangent space for itself regarded as a Coo
manifold. Similarly one can define C00 functions and tangent spaces

—_ A
for the direct product G X G. Here again there is a universal
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tangent space. It is naturally isomorphic to G ) G. If we
define i(xl,xz) as (-xz,xl) s (5] G becomes a complex vector
space. We may thus define analytic functions on G X C/}\ to be those
which are differentiable and have differentials which are complex
linear. It turns out that Laplace transforms f are analytic on
G x e in this sense and that for suitable classes of functions analy-
ticity is equivalent to being a Laplace transform. When G is an
—_ A

n-dimensional vector group, G X G is the usual space of n complex
variables and the Laplace transform is the classical 2"- sided
Laplace transform in n dimensions. When G is a free abelian

— A
group with n generators G X G is the direct product of n
complex planes with origins missing and the Laplace transform is
the classical Laurent series in n variables.

In [2] brief indications were given as to how various classi-
cal theorems about analytic functions could be carried over into -
the more general context just described. Due partly to unexpected
difficulties in finding suitably definitive formulations and partly to
the pressure of other interests thé carrying out of this program was
indefinitely postponed and the detailed paper promised in [2] has yet
to be written. On the other hand Arens and Singer have recently
come upon closely related ideas in studying certain Banach algebras

&
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and have written a paper [1] having some overlap (though from a
different viewpoint) with the unwritten development of [2]. They
study the completion in a certain norm of the Ll algebra of a semi-
group and show that as an algebra of functions on its maximal id/eal
space it behaves much like an algebra of analytic functions. From
the point of view of [2] this is because this maximal ideal space is
the closure of a subset of G X Cl}\ where G is a group generated by

their semigroup.

In the present sequel to [2] we propose to outline an expansion

A

of its program in which ‘G X G is replaced by a more general object

which has no built-in group structure or universal tangent space

and of which the complex analytic manifold is a special case.

2. C00 AND COMPLEX ANALYTIC ERGODIC LACINGS
Let E be a locally compact Hausdorff space. Let there be
given an equivalence relation in E and in each equivalence class
the structure of a Coo manifold. We shall say that E with this

additional structure is a C°o ergodic lacing provided that conditions

(2), (b) and (c) to follow hold. (a) The identity mapping from each

equivalence class (as a Coo manifold) to E is continuous.

II-262

.




.

GENERALIZED ANALYTIC FUNCTIONS

(b) Any function from E to the complex numbers which is continu-
ous on E and constant on each equivalence class is constant on E,
(c) For each p ¢ E there exists a neighborhood N of p (relative
to the manifold structure of the equivalence class containing p)
such that every C°o tensor field defined in N has an extension

to a Coo tensor field defined on E, In formulating (c) we are
anticipating the remark that one defines tangent space at a point
and other notions of differential geometry for E in the obvious way
making use of the fact that each point of E is contained in a unique
C00 manifold. We require however that Coo functions be continu-
ous in the topology of E as well as in Coo on each equivalence
class. This requirement of course restricts the class of C

0

tensor fields on E. An example of a Coo ergodic lacing is
A

—~

&
furnished by the connected group & considered above. x —» x (1)
is a homomorphism of G onto a dense subgroup K of G and K
inherits a Coo manifold structure by virtue of its isomorphism

— A
with a quotient group of G. The cosets of K in G share this

A
manifold structure. G with these cosets as equivalence classes is

easily seen to satisfy (a), (b) and (c). Whenever K # G we have an

example of a Coo ergodic lacing which does not reduce to an

#
4
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ordinary Coo manifold. In general, of course, the ordinary Coo
manifolds are just the Coo ergodic lacings in which there is a
unique equivalence class. More general examples may be obtained
by letting connected Lie groups act ergodically on suitable spaces
and taking the o1bits as the equivalence classes. We define a

complex analytic ergodic lacing as a C00 ergodic lacing together

with an assignment of "multiplication by i' in the tangent space at

each point, this assignment having the following two properties: (a) The
tensor field which defines it is a C00 tensor field on the underlying

Coo ergodic lacing. (b) This tensor field converts each equivalence
class into a complex analytic manifold. It is clear how one gives

the group G X e considered above the structure of a complex anal-
ytic lacing and how one defines analytic functions on general complex

analytic ergodic lacings.

3. INTEGRATION IN Coo ERGODIC LACINGS
Let us call an n-th order anti-symmetric covariant tensor
in an n-dimensional vector space a determinant. In an oriented
COo manifold each COo determinant field defines a unique signed

Borel measure in the manifold. The obvious generalization of this

correspondence to Cco ergodic lacings yields measures which are
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infinite on far too many sets and not suitable for our purposes. We
d shall introduce a different correspondence which, while not so
perfect as the classical one, yields better behaved measures and in
the case of 8 assigns Haar measure to translation-invariant
determinant fields.

We base our discussion on the notion of the divergence of a
contravariant vector field with respect to a measure. Let E
denote a Coo ergodic lacing and let a be a non-negative Borel
measure on E which is finite on compact sets. Let L be a Coo
contravariant vector field on E. Let D(E) denote the ring of all
Coo complex-valued functions on E which have compact supports.
L(f) then makes sense for each f ¢ D(E) and f — L(f) is a
derivation of D(E). We shall say that L. has an a-adjoint if for
each g e D(E) there exists a complex valued function g* in
\ LZ(E,u) such that [ L(f)gda = ffg*da for all £ in D(E). We set
g* = L*(g) and note that L>== is a linear operator. A simple ,
calculation shows that f — L(f) + L*(f) commutes with multi-
Plication by members of D(E) and hence that there exists a

3K
(real-valued) function 6 on E such that L(f) + L. (f) = -6f for all

f in D(E). We shall call 8 the a-divergence of L and write
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6 = div (L). If div (L) isa C functionon E for all C vector

a a ) )
fields L., we shall say that a is a C00 measure. We note the com-
putation rules: (a) diva (fL.) = £ diva(L) + L({f), (b) divPa(L) = diva(L)
+ L(log f)’ (c) diva[L, M] = L(diva(M)) - M(diva(L)).

Let Oy and a, be Coo measures in the same measure
class (that is, having the same null sets) so that a, = po. Suppose
that div (L) =div (L) for all C vector fields L. It follows from

a a, 0

computation rule (b) that L(log P) =0 for all L. and hence that p isa
constant on E, In other words, given the measure class of a, a itself
is determined up to a multiplicative constant by the mapping L —> diva(L).
Now let W be a nowhere zero Coo determinant field in E. Then W
defines a C00 measure in each equivalence class. Computing the

divergence of L with respect to this measure in each equivalence

class we get a real-valued function on E which we denote by divW(L)

and call the divergence of L with respectto W. Of course divW(L)
may be expressed in purely differential terms. A Coo measure aq
in E will be said to be compatible (with the manifold structure in E)
if W exists so that divW(L) = diva(L) for all Coo vector fields L.
It is clear from computation rule (b) that every Coo measure in the
same measure class with a compatible a is also compatible. Hence

we may speak of compatible measure classes, Within any such
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class each W determines a unique a up to a multiplicative con-
stant. At the moment we can say nothing of interest about the
uniqueness of compatible measure classes and can say nothing
about their existence in general C00 ergodic lacings., On the other
hand there are many examples for which it is known that at least
one such measure class exists -- the measure class of Haar

A
measure in G, for instance. We hazard the conjecture that there
are many Coo ergodic lacings (other than COo manifolds) in
which there exists a unique compatible measure class. In any
event one can study the compound system consisting of a COO

ergodic lacing together with a particular compatible measure class

for it. We shall call such a system a measured CQo ergodic lacing.

Let (E,A) denote a measured Coo ergodic lacing. Let a

be a particular member of A and choose Wo so that div(1 (L) = divw

(o]

for all C vector fields L. Then div (L) = div (L). Thus
0 fa. PW

o o
choosing just one arbitrary constant sets up a one-to-one corres-
pondence between nowhere zero Coo determinant fields and members
of A. Obviously this correspondence may be extended to one

between C determinant fields, zero or not, and signed measures
[+ o]

absolutely continuous with respect to A. When such a choice has
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been made we say that (E,A) has been normalized. On a normalized
measured Coo ergodic lacing every Coo determinant function de-

fines a unique signed measure in E,

4, PATH INTEGRALS AND THE CAUCHY THEOREM
Let R be a complex analytic ergodic lacing all of whose

tangent spaces have complex dimension n and hence real dimension
2n. Let E be a compact normalized measured ergodic lacing all
of whose tangent spaces have dimension n. By an E pathin R we
shall mean a Coo map from E into R. Let ¢ be an E pathin

R and let Z be a complex analytic determinant function defined in
an open set including the range of ¢. Then Z composed with the
differential of ¢ 1is of the form W, +iW_ where W_. and WZ are

1 2 1

C00 determinant fields in E. We define jqb Z as awl(E) + 1(1WZ

(E)
where Cwr denotes the signed measure in E defined by W. When
E is the unit circle, R the complex plane and Z the '"differential"
f(z)dz then qu Z reduces to the familiar f f(z)dz around the closed
path defined by ¢.

Now to a considerable extent the classical Cauchy theorem

(and in a weaker sense the Cauchy formula as well) is contained in
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the statement that [ f(z)dz does not change when the path of inte-
" gration is continuously deformed within the domain of analyticity
of f. This suggests that one attempt to prove that f¢ Z is constant
under correspondingly restricted continuous deformations of ¢ and
thus obtain a Cauchy theorem for general complex analytic ergodic
lacings. Our still incomplete work in this direction makes it
obvious that such a theorem is true and can be proved without great
difficulty. However it is not yet clear exactly what hypotheses are
needed and we feel that it would be premature to attempt to formul-
ate a precise result at the present time.

The Cauchy formula described in [2] is a consequence of the
Fourier transform theory for groups and the special case of the

_ A A

above in which R is G X G. E is G with the measure class of
Haar measure, d)r is of the form y —> [rll/l(y) + (l—r)t//z(y), v]

A —
and (//1 and 1,02 are COo functions from G to Q.

It is to be noted that one obtains something more or less new %
»

¢
from the general Cauchy theorem described above even when R is

the complex plane provided that E is not a Cc>o manifold. For

A
example if E is G where G is the additive group of the

rationals then ¢(3) can be the closure of the range of any Coo
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almost periodic function on the real line whose Dirichlet expansion

involves only terms of the form ¢ exp(iaxx) where X\ is rational.

5. GENERAL REMARKS

The preceding is a very preliminary account of our program.
At this point we are not even sure that we shall not want to change
the definition of Coo ergodic lacing to some extent. Ultimately, of
course, we shall want to include lacings of the form G X é where
G is infinite dimensional, but infinite dimensionality produces so
many new difficulties that it seems best to exclude infinite dimensional
tangent spaces for the time being.

At the moment there seems to be some hope of proving that
the measure class of Haar measure is invariant under all self
homeomorphisms which preserve its structure as a Coo ergodic
lacing. If so this measure class can be characterized as the unique
one having the indicated invariance property and we may single out
as especially interesting those Coo ergodic lacings for which such
a unique invariant compatible measure class exists. These Coo

ergodic lacings might well form a larger class than those possessing

a unique compatible measure class.
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For Coo manifolds it is known that the tangent space at
each point may be described purely algebraically as the set of
derivations at that point of the ring of all Coo functions with com-
pact support. Whether such a result holds for general Coo ergodic
lacings is a question which remains to be thoroughly investigated.
The classical proof does not extend directly due to the global
restriction on Coo functions in the general case.

When E is a Coo ergodic lacing, but not a Coo manifold,
one can consider functions which are Coo on each equivalence
class but instead of being continuous on E have only some weaker
property, such as being Borel functions. It seems probable that
one can extend the Cauchy theorem to apply to such discontinuous
analytic functions.,

The lack of a suitable notion including both complex analytic
manifolds and lacings of the form G X 3 was one of the chief
difficulties which led to our indefinite postponement of the program
outlined in [2]. Having now such a notion at our disposal we feel
that the chances are excellent that a first detailed paper on the
subject will be ready within a year.

Harvard University
Cambridge, Massachusetts
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RINGS OF MEROMORPHIC FUNCTIONS

H. L. Royden

1. INTRODUCTION

In this paper we discuss some of the algebraic properties of
rings of meromorphic functions on Riemann surfaces of finite
genus. We consider primarily the compact surfaces and those
open surfaces which are open subsets of compact surfaces and
have the property that each boundary point (relative to the com-
pact surface) can be an essential singularity for a bounded
analytic function on the open surface.

On the compact surfaces we are interested in the field of all
meromorphic functions while on the open surfaces we are most
interested in the field of quotients of the bounded analytic functions.
For the sake of convenience we shall refer to both of these fields
as the fields of "meromorphic functions of bounded characteristic',

In Section 3 we characterize the valuations on this field for
finite Riemann surfaces, i.e. connected open subsets of compact
surfaces whose boundary consists of a finite number of Jordan
curves. In the last section we characterize the homomorphisms of
this field into the field of all meromorphic functions on an arbitrary
Riemann surface.

Some of the present results have been anticipated by Heins [1],

s
X
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particularly proposition 3 and the corollary to proposition 4. The

methods of proof used here are somewhat different and are closer to

the work of Rudin [3].

2. SOME FUNCTION-THEORETIC LEMMAS
We list here some lemmas concerning Riemann surfaces.
The first is classical [4], and the proof of the third is quite simi-

lar. The second lemma is a consequence of Abel's theorem.

LEMMA 1: Let W be a compact Riemann surface and
f a meromorphic function on it. Then f assumes each
value on the Riemann sphere the same number of times,
say n. If g is any other meromorphic function on W,
then g satisfies an algebraic equation of degree n whose
coefficients are rational functions of f. Moreover, for each
complex number z we may choose a meromorphic function
g which separates the points f—l(z) and such that every
meromorphic function on W is a rational function of £

and g.

LEMMA 2: Let W be a non-compact finite Riemann sur-

face. Then for some integer n there is an analytic function

11-274

LY



RINGS OF MEROMORPHIC FUNCTIONS

f which maps W onto the circle |z] <1 so that each

value of z in lzl <1 is assumed exactly n times.

LEMMA 3: Let W be a non-compact finite Riemann
surface and f the function of lemma 2. Then each
analytic function g on W satisfies an equation

2 1%

Z b{flg =0

v

v=0
where the bV are analytic functions in the interior of
the unit circle which are bounded if g is bounded. For
each z in |z]| <1 we can find a bounded analytic
function g on W which separates the points fnl(z)
and which has the property that each analytic function

h on W can be expressed as

n-1 .
h= % Cy(f) g ?’

v=0
where the coefficients c,6 are analytic functions in the

interior of the unit circle and are bounded if h is.
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3, THE VALUATIONS ON SOME FIELDS
OF MEROMORPHIC FUNCTIONS
Let F be a field which contains the field C of complex
numbers. By a valuation on F we shall mean a mapping v of the

non-zero elements of F onto the integers such that

i) v (fg) = v(f) + v(g)
ii) v (f + g) > min [v({), v(g)]
iii) If v(f) >0, there is a A& C such that

v(f - \) > 0.

It should be noted that these properties imply that v(x) = 0 for
each non-zero )\ in C. This implies that the \ in (iii) is

unique.

In this section we prove two propositions about valuations.
The first is classical, but the proof is included here both for com-
pleteness and for comparison with the proof of the second proposi-

tion.

PROPOSITION 1: Let F be the field of meromorphic
functions on a compact Riemann surface W. Then for

each valuation v on F thereisa unique point P ¢ w
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such that v(f) is the order of f at P,

PROOF: Let f be a function in F with v(f) =1, and let
P iPprecesPy be the zeros of f. For any rational function r,
we have v[r(f)] equal to the order of r at zero. Let g be
any function in F. Then g satisfies an equation
n-1
g+ T or (g =0,
v=0 7
where the r are rational functions of f. If v(g) were negative,
then for some v we have v(ry(f)) negative, whence rV has a
pole at zero. Since rV(O) is an elementary symmetric function
of the values of g at the points p;, we see that g must have a
pole at one of the points p;- Consequently, if g is neither zero
nor infinite at any of the points p;» we have v(g) =0,
Let g be a function which separates the points P; and
whose derivative does not vanish at any of the P;- Set g;
=g - g(pi)' If v, is the order of f at P,, the function 177 giyi}

is neither zero nor infinite at any of the p; and so must have zero

valuation. Since v(gi)_>_ 0, and

™M=

1=v(f) =

' v;vig,)
1

0
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we have v(gi) = 0 for all i except one, say i = 0, where v(go) =1,
v =1

Let h be any element in F and let M, be the order of h at
P;- Then h/[ -ﬂ- giui] is neither zero nor infinite at any P; and hence

has valuation zero. Thus v(h) = Ko the order of h at P, proving

the proposition.

PROPOSITION 2: Let F be the field of quotients of the
bounded analytic functions on a non-compact finite Riemann
surface W. Then to each valuation v on F there is a unique

point P, € W such that v(f) is the order of f at P

PROOF: If f is an analytic function such that lf] < M
on W, then for each X with l)\l > M, the function f -\ has an
n-th root in F for each positive integer n. Thus v(f - \} is
divisible by every n and so must be zero. By (ii) we have v(f) >0,
showing that v is non-negative on the bounded functions.

Let f be the function of lemma 2. Then by (iii) there is a
complex number z such that v(f - zo) > 0. Since v{(f-x)=0
whenever lxl >1, we have lzol <1. Let Prvees Py be the points
on W where f has the value z, and let ui be the order of f - Z

at p;. For any bounded function g, the function
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M.
TTg - gl
;

is bounded and so v(g - g(pi)) must be positive for some 1i. Thus
if g is a bounded function and v(g) > 0, then g vanishes at one of
the points P,
Let 8o be a bounded function which separates the P;- By
subtracting a suitable constant we may assume v(go) > 0. Then
S g, must have a zero at precisely one of the p;» say p_. If g is
any bounded function such that g(po) # 0, then for a sufficiently
small ¢ the function g, + €g vanishes at none of the points p;-
Thus 0 = v(go + eg) > min[v(go), v(g)], whence v(g) = 0. Con-
sequently, v(g) > 0 implies that g(po) = 0. If on the other hand
g(po) = 0, we may subtract a constant X\ so that v(g - A) > 0.
But then g - A must vanish at Po’ whence A =0 and v(g)> 0.
Thus for bounded functions v(g) > 0 if and only if g(po) = 0, -
Now let g be an analytic function on W with a simple zero « 4
at P, and no other zeros on W. If h is a bounded analytic )
function of order v at P, then h/(gv) is a bounded analytic

function which does not vanish at P, Hence its valuation is zero,

and v(h) = vv(g). Since each function in F is the quotient of two
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bounded functions we see that its valuation is just its order at P,
times v(g). Since v is onto, v(g) =1, and the proposition is

proved,

4, HOMOMORPHISMS BETWEEN RINGS
OF MEROMORPHIC FUNCTIONS
In this section we discuss some of the consequences of hen.o-
morphisms between rings of meromorphic functions on two Riemann
surfaces. We first prove a proposition which tells us that in general
a ring homomorphism must be an algebraic (or conjugate algebraic)

homomorphism.

PROPOSITION 3: Let R1 and RZ be any two rings of

and W_,

meromorphic functions on Riemann surfaces W1 2

and let ¢ be a ring homomorphism of R1 into RZ' If R1

contains all the complex constants, then ¢ takes constant
functions into (possibly different) constant functions. If
in addition R1 contains a bounded function f such that
¢(f) is not constant and if Rl contains all functions of the
form F ¢ f, where F is analytic on the range of f, then

|

either ¢(\) = A for each complex constant )\ or else
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#()\) = % for each complex constant X\.

PROOF: Unless the range of ¢ is 0, we must have o) = 1.

From this it follows that ¢(p) = for each real rational and
?

that ¢(i) is either i or -i. For each rational fJ, i. e. a number

of the form a +iB, o and $ real rational, we have ¢(P) =P in 4

e e

the first case and (b(P) =F in the second. If \ is any complex

. constant, then X\ - P has a square root for any rational ps and

'~ thus for each rational P the function ¢(\) -? has a square root.

Consequently ¢(\) must be constant. "

Let f be the bounded analytic function given in the second

part of the proposition. Without loss of generality we may assume

that O is in the range of ¢(f). Since ¢(f) is not constant there

must be a positive § such that all numbers whose modulus is less 4
P

than § are in the range of ¢(f). Let M be the supremum of |£], ?q .

Y
and for any complex constant \ take a real rational P such that /&

Nd
.

pM [x] <1. Then the function g =1+ P)\f has an n-th root for .
every n. Consequently the function ¢(g) =1+ Pd)()\)(b(f) must also
have an n-th root for every n. But this implies that [Pd)(}\)]—l is

not in the range of ¢(f), and so qub()\)l must be less than 1/8,

SR -t e e

. whence \

By
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1
|¢()\)l <—6—P.

Since this is true for all positive rational f) which are less than

M([xl)_l, we have

|6 (N ] 5M16_xl .

Thus ¢ is a continuous mapping of the complex field onto itself,

and so we must have ¢(\) = A for all A or else ¢()\) = x» for all .

PROPOSITION 4: Let W1 be a Riemann surface and Fl ‘

a field of meromorphic functions on it with the property that

for each valuation v on F. there is a unique point p ¢ W

1 1

such that v(f) is the order of f at p. Then for any alge-

braic isomorphism ¢ of F1 into the field F2 of all mero-

morphic functions on a Riemann surface WZ’ there is an

analytic mapping ¢ of WZ into W, such that ¢f =1f o ¢.

1

PROOF: Since ¢ is one-to-one, the range of ¢ contains

non-constant functions. Consequently, for each p ¢ W2 the

function W(f) which gives the order of ¢(f) at p is a mapping of

F_ into the integers which is either a valuation on F

1

or a positive

1

integer times a valuation. By hypothesis there is a point ¥(p) ¢ W1
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such that this valuation is just the order of a function at y¢(p). Thus
¢(f) vanishes at p if and only if f vanishes at y(p). Consequently
¢f =f ey, The mapping ¢ is readily seen to be analytic, proving

the proposition.

COROLLARY: Let Wo be a compact Riemann surface
and Fo its field of meromorphic functions, Then for any
algebraic isomorphism ¢ of Fo into the field Fz of all
meromorphic functions on a Riemann surface W2 there

is an analytic mapping ¢ of W_ into Wo such that

2
¢(f) =foy.

THEOREM 1: Let W0 be a compact Riemann surface,

and W1 a connected dense open subset of Wo with the

property that for each boundary point of W1 there is a

bounded analytic function on W

1 having an essential singu- A
e

<

larity at that point., Let ¢ be a ring isomorphism of the !

ring R, of meromorphic functions of bounded character-

1
istic on W1 into the ring R2 of all meromorphic functions
on some Riemann surface WZ‘ Then if ¢ (i) = i, there is

an analytic mapping ¢ of W2 into W1 such that

b
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o(f) = £ oy

PROOF: By proposition 4, ¢(\) = A for each complex con-
stant )\, and we have an algebraic isomorphism.
We first note that the field Fo of meromorphic functions on

W0 is contained in F.. For let P, be a fixed point of W Then

1 1

each f in Fo is a rational function of functions in Fo which
poles only at P, But if f e Fo has a pole of order n at 1258 and

no other poles on Wo and if g is a bounded analytic function on

W), then [g - g(po)]nf is also a bounded analytic function on W,

whence f is the quotient of two bounded analytic functions on Wl'

Thus ¢ maps Fo into FZ’ and by the corollary of propos-
ition 4, there is an analytic fnapping ¢ of WZ into Wo such that
¢p(f) =foy for fe FO.

We next note that ¢ carries bounded functions into bounded

functions. For if fe F1 is bounded by M, then f - X\ has an n-th

root whenever |\] > M. But this implies ¢(f) - X has an n-th root

whenever || > M, whence l¢(f)| <M on WZ'

Liet f be a bounded function in F., and p ¢ W, be a point

1 2

such that Y{p) e W.. Let ge Fo be a function in Fo which is

1

analytic except at Y(p) where it has a pole of order n. Then
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{f - f[(//(p)]}ng is a bounded function and so its image under ¢ must
also be bounded. But this image is {¢(f) - f[;,&(p)]}nqb (g), and ¢ (g)
has a pole at p. Hence at p we must have ¢ (f) = f[¢(p)].

Thus ¢(f) =f 0y in (p—l(Wl). Since lp—l(Wl) is a non-empty
open set, this implies that each bounded analytic function in W1 is

also analytic in (,{/(WZ), and so we must have (,D(WZ) C Wl° This

completes the proof of the theorem,
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ANALYTIC FUNCTIONS ON LOCALLY CONVEX ALGEBRAS

Lucien A. Waelbroeck

1. It is well known that the theory of locally convex algebras
is not a trivial generalization of Banach theory. The inverse a
is defined and continuous on a neighborhood of the unity of A, if A
is a Banach algebra, but need not be defined, much less continu-
ous, if A 1is only supposed locally convex. This property is
important for the proof of many important theorems of Banach theory,
We cannot hope to generalize these to general locally convex alge-
bras.

I shall try to show how important this continuous inverse
property is in Banach theory, by generalizing parts of Banach
algebra theoxly to locally convex algebras where the inverse has
stronger or weaker continuity properties. I shall also try to indi-
cate the relationship which exists between the properties of the
inverse, and the parts of the theory that can be generalized in this
fashion,

This program is too ambitious for the space allotted to me.

I shall study here the theory of analytic functions m locally convex
commutative algebras. The relationship existing between the pro-
perties of the inverse and the more general properties of the algebra

appear clearly in that theory. Also, these relationships are typical,
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and other parts of Banach theory can be generalized in a similar way
to locally convex algebras with stronger or weaker continuity pro-

perties for the inverse.

2., The algebra A which we shall study is commutative
with unity over the complex field. A locally convex topology will
be defined on A, That topology will be supposed complete, and the
product continuous in both variables.

These topological hypotheses are somewhat stronger than

(1)

we need. We shall not try to weaken them, since we wish to
place the emphasis on the continuous inverse hypothesis, and not on
the continuous product hypothesis.

The algebra A has a unity element. We shall identify it

with the complex number 1, and its product by the complex number

z with z itself. This identification is classical, makes for simp- A

Fd

*

ler notations, and will not be misleading below.
Bounded sets will have to be considered in A, Those are

the sets which can be sent homothetically into all neighborhoods of

1
See L. Waelbroeck. Note sur les algebres du calcul symbolique.
Journal de Mathématiques pures et appliquées. (To be published).
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zero. Such a set has the following property: za tends uniformly
to zero when z is a complex number which tends to zero, and a

varies over the set,

3. Let f be a function with domain D in A, and with

range in A,. The function f is A-differentiable if its differential

in some sense is A-linear. We shall wish to be as general as poss-
2
ible at the outset, and shall therefore consider the GAteaux differential, (2)

f(z) is A-differentiable in the sense of GaAteaux at a point

z in A, if we can find an A-linear function u(h), which is such that

f(zo+sh) - f(zo)

S — u(h)
when s is a complex number which tends to zero.
Suppose D is open; f(z) is analytic over D if it is A-

differentiable in the sense of GAteaux at each point of C. (3)

2

( )Gateaux. Fonctions d'une infinité de variables indépendantes.
Bull. Soc. Math. Paris, 47. 1919; Sur diverses questions de calcul
fonctionnel, Bull. Soc. Math. Paris. 50, 1922.

3

( )This generalizes the definition given by E. R. Lorch, in "Analytic
functions on vector rings', Trans. Am. Math. Soc. 54, 1943, when
A is a Banach algebra.
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The A-linear functional can then be set equal to hf'(z),

S flatsh)] _, = bf'(z)

for all z in D, andall h in A, if s is a complex variable. The
function f{'(z) is clearly analytic over D. We can define successive |

()

derivatives, i, e. (z) for all positive r.

The Taylor series

2

f(z+h) = f(z) + hf' (z) +%Tf"(z) L

converges if h is an element of A such that {(z+sh) ¢ D for all
complex s such that ls] <1, The set of those h is a neighbor-
hood of zero; the sum of the series is f(z+h). Applying the class-
ical proof, we show that an analytic function vanishes identically
over D, if D 1is connected, and all derivatives of f vanish at one

point of D, 4

4. Let A be an algebra, and D be any open set in A.
We can always find functions which are analytic on D: the polynom-
ials, for example. There may also be analytic functions which are

not polynomials.
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One may ask whether there are always analytic functions on
D which are not polynomials. The answer is negative. We shall
construct an algebra which is such that f is a polynomial if f is
analytic on a domain of this algebra,

The elements of this algebra A are polynomials in one
variable x with complex coefficients, The topology of A is the
finest locally convex topology which can be defined on that space.
Addition and multiplication are defined in the usual way. This
algebra has the properties listed at the beginning of this paper; one
can show that it is complete, and that the product defined on A is
continuous in the two variables.

Let then f(z) be analytic when 2z is near to zero in A, The

Maclaurin expansion

T
f(z) =X a_z

converges when z is near zero, converges therefore when =z = sx,

if s is a small complex number:
f(sx) = Za.rsrxr

i The sum of this series belongs to A, hence is a polynomial (of
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finite degree) in x. The power series can thus have only a finite
number of non-vanishing terms, and the function f(z) is a poly-

nomial,

5. We cannot say that the theory of analytic functions on the
algebra A considered above is a good generalization of the theory
of analytic functions on Banach algebras. The following proposi-
tion is true when A is a Banach algebra:

There are locally as many analytic functions of an A-variable
as there are A-valued functions of a complex variable. Suppose {(s)
is a function of the complex variable s, which is analytic for s
near zero. We can find a function F(z) of an A-variable {and
obviously only one, locally) which is analytic for z near zero, and

such that

f(s) = F(s)

when s is a small complex number. (We identify the complex
number s, with the product by s of the unity element of A.)
As we have just said, this is true when A is a Banach alge-

bra. It is not true when A is the algebra defined above. Other-
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wise, (l—z)_l would be analytic for z near to zero, and it is not
analytic there, (It is not defined there,)

In fact, suppose the analytic extension theorem true; (l—s)—1
is an analytic function of the complex variable s, when s is near
zero. It has therefore an analytic extension, ¥(z). This extension
is analytic over a neighborhood of zero and satisfies the equation

(1-z)F(z) =1 when z is complex, and therefore for all z in the

domain of F(z) since there can only be one analytic function of =z

which is equal to 1 when 2z is complex.
We show that F(z) is an inverse of (1~-z) over its domain,
i. e. (1-z)-1 is defined and analytic for z near zero, and there-

-1 . .
fore =z when z is near the unity.

6. We shall say that there are enough analytic functions on
an algebra A if the local extension proposition is true. We have
seen that z-l is then defined and analytic for z near the unity.

Conversely, suppose that z-l is defined and analytic when
z is near the unity. Let f(s) be an analytic function'of the complex

variable s, when s is near zero.

1
£(s) =2+r1_g £ g

1-t s
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if j is a circle of sufficiently small radius, and center zero, des-
cribed positively, and if s is a point inside of j.
-1 -1
The function (1-t 1z)‘ is an analytic function of z, for =z

in A, near zero, and t on j.

1.-1

1 -1 -1 .-
F(z) = e f t ()1 -t Tz] T dt
is an analytic extension of z, since the integral converges uniform-
ly. This function is an extension of f(s). There will therefore be

enough analytic functions on A, if a-1 is analytic for a near the

unity,

7. Let us now seek conditions for the analyticity of z-l. We
know that (l+sh)-1 is an analytic function of the complex number s,

if h isin A, and s small (depending on h), if the function .

is analytic for z near the unity. Analytic functions of a complex 'fy
p

variable are continuous, and therefore bounded over some neigh- .
borhood of the origin: (1+sh)_1 is therefore bounded when

|s| < e(n).

(4)

We shall say that an a € A is regular if (a.-'c)-l is

(4)Defined in L, Waelbroeck. Le calcul symbolique dans les algibres
commutatives., Journal de Math, Pures et App., (9), V. 33, (1954).
pp. 147-186.

“
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defined and bounded for |t| > M. All elements of A are regular

if =z is analytic for z near the unity. The inverse is further-

more defined on a neighborhood of the unity, if it is analytic there.

8. Conversely, suppose that the inverse is defined over
some neighborhood of unity, and suppose further that all elements
of A are regular, i.e. that (a—t)_l is bounded for [tl > M(a).

L.et h be an element of A, and s a small complex number.

(1+sh)'1 =1 - h(h+s'1)'1

is defined and bounded if |s| < M(h)-l,
-1 -1
(1+sh) ~ -1 = -sh(l+sh)

tends to zero when the complex number s tends to zero. (The
right-hand side is the product of two bounded factors by a complex
number which tends to zero.)

We therefore see that

(1+sh)'1 -1

. +h = h[-(1+sh)'1 +1]

-1
tends to zero when s tends to zero. The function z has an
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A-derivative in the sense of Giteaux for z =1, and this derivative

is equal to -1,

With a simple change of variables, applying the identity

-1 i R
z =a 1[a 1z] 1
we finally see that
dz -1 B -2
dz -

on the set of invertible z's, This set is open. The inverse has an
A-derivative on an open set; it is analytic on that set,

The inverse will be analytic if and only if all elements of A
are regular, the set of invertible elements being a neighborhood of
the unity. This is therefore a necessary and sufficient condition

that there be "enough'' analytic functions on A,

9. The following is an interesting special case: we shall

5
say A is a continuous-inverse algebra( ) if the set of invertible

elements is a neighborhood of the identity element, and the inverse

is continuous for a =1.

(S)L. Waelbroeck. Les algdbres 3 inverse continu. C.R. Paris,
t. 238 (1954).
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It is well known that the set of invertible elements is then
open, and that a_l is continuous for all invertible a. Further
(l+sh)"1 is bounded if lsl < g(h), and all elements of A are
therefore regular. The inverse is analytic, therefore we have
“"enough'' analytic functions.

In the Cauchy integral expansion (paragraph 6), the integrand
is a continuous function of z. The integral is continuous too.
Analytic functions on continuous-inverse algebras are continuous.
We see here how the properties of the inverse, and those of the
analytic functions on A can be linked, and how intermediate con-
tinuity conditions for the inverse yield intermediate conditions for
the analytic functions.

Other properties of Banach algebras can be generalized too.
The quotient of a continuous-inverse algebra by a closed ideal is a
continuous-inverse algebra, of course. It is somewhat more
difficult to show that a closed subalgebra of a continuous-inverse
algebra is a continuous-inverse algebra. We must show that the
elements of the subalgebra A' which are near the unity have their
inverse in A'. But the Maclaurin expansion of (l—h)-1 is a geco-
metric series. The terms of the series all belong to Af the sum

must belong to A' too.
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The maximal ideals of continuous-inverse algebras are
obviously closed. (The set of invertible elements is a neighbor-
hood of the unity.) The quotient A/m is a continuous-inverse
locally convex field. Such a field is isomorphic to the complex
number field, (6),

These two properties of maximal ideals of A are essen-
tially those needed to generalize the Gelfand theory of maximal
ideals to continuous-inverse algebras.

We can generalize in this way an important part of Banach
algebra theory to continuous-inverse algebras. Weaker continuity
conditions for the inverse, besides, allow weaker generalizations
of Banach theory. We have shown this in analytic function theory,
but it is true in other parts of Banach theory too. The possible

generalizations, though, are not as satisfactory in that weaker case,

as they are in the continuous inverse case. ) &

University of Brussels
Brussels, Belgium

(6)L. Waelbroeck, Les surcorps du corps des nombres réels. Bull,
Acad., de Belgique (5) 38,(1952).
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John Wermer

Let E be the open unit disk in the z-plane and E its closure.
Let A be the ring of all functions continuous on E and analytic on E,
We use on A the topology of uniform convergence on E. Let R be
a subring of A which contains all constants and separates points in

E, i.e.

1) If z # z, with z., z. ¢ E, then there is some g

1" 72

in R with g(z,) #g(zz).
QUESTION: Under what conditions is R dense in A?

A well-known theorem of Walsh answers this question in the
case when R is the ring of polynomials in a single function ¢. In
this case (1) is necessary and sufficient in order that R be dense
in A,

In the general case,the condition
(2) If z ¢ E, there is some g in R with g'(z) # 0,

is obviously necessary for R to be dense in A. Also (2) is not
implied by (1) as is seen by taking for R the ring of all functions

in A whose derivative vanishes at the origin.
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However (1) and (2) together are not sufficient in general. To
‘ see this we take a simple closed curve £ having on it an arc a of

positive plane measure. Let R1 be the ring of all functions analytic

in the interior B of {$ which can be extended to the whole Riemann
sphere to be everywhere continuous and to be analytic on the comple-
ment of a. By reasoning given in [1] we can verify that (1) and (2)

hold for R1 relative to B {J £. Letnow T be a conformal map of

B on E. Then T extends to a homeomorphism of Bl{JB onto E

This homeomorphism carries R, onto a subring R of A which

1

satisfies (1) and (2). If R were dense in A, then Rl would be

dense in the ring A, of all functions analytic on B and continuous

1

on BUPB. But R, is a closed subring of A, by the maximum

1 1

principle applied to the complement of the arc a on the sphere.

Also clearly Rl #Al. Hence R1 is non-dense in Al and so R is

non-dense in A. .

<y

) Let us now assume the following:

(3) Every function in R is analytic on the closed disk E.

(4) There is some ¢ e R with ¢! #0 on |z] =1.

THEOREM 1: Let R be a subring of A satisfying (3) and

(4). Then R 1is dense in A if and only if conditions (1) and
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(2) hold.

NOTE: This theorem remains true when the unit disk is
replaced by any finite Riemann surface whose boundary is a simple
closed analytic curve, provided we replace ''derivative' by
""differential' in (2) and (4). The proof is practically the same as
that of Theorem 1.

If on the other hand we replace the unit disk by a region with
more than one boundary curve, Theorem 1l is no longer true. For
instance, let A.2 be the ring of functions analytic in the open
annulus 1< |z| < 2 'and continuous in the closed annulus and let R2
be the ring of polynomials in z. Then clearly R2 satisfies (1),

(2), (3), (4) relative to the annulus and yet RZ is non-dense in AZ'

We shall derive Theorem 1 from the following known result:

([2], Chap. IX, p. 10, Lemma)

LEMMA 1: Let V be a complex-analytic varietvy, K a
compact setin V and P an algebra of functions analytic in V
which contains all constants. Assume

(5) If x¢ K, thereisa g in P with |g(x)| > sup |g(y)].

ye K

(6) The functions in P separate points in V,

(7) Each point in V has a system of local coordinates
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consisting of functions in P.
Then every function analytic on a neighborhood of K can

be uniformly approximated on K by functions in P.

Observe that conditions (6) and (7) are very nearly the same
as (1) and (2) if we take for V a disk of radius 1+ ¢, ¢ > 0. The
crucial point in the proof of Theorem 1 is thus the verification of

(5). We begin with:

LEMMA 2: Let R satisfy (1), (2), (3), (4) on E. Then we
can find a set of four functions fi in R, i=1,...,4 and a
disk V: |z| <1+, ¢ >0, such that each fi is analytic on
V, and such that:

(8) If aeV, |a]>1 and be V, |b] <1, then fl(a) #fl(b)
or fz(a) # fz(b).

(9) The £. separate points in V.

1 .;7'

(10) For each x e V there is some i with fi'(x) = 0. ¢

PROOF: We first show that there is a function fl in R
taking only finitely many values more than once on |z| =1 and
with non-vanishing derivative on [z[ = 1. It is then an immediate
consequence of (1) that there is some f‘2 in R, fZ not a constant,

such that fl and f2 together separate points on |z| =1. We can
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then show that there exist at most finitely many pairs (p,q) of distinct
points in lz| <1 such that fl(p) = fl(q) and fz(p) = fz(q). Because of
(1) we can then find a function f3 in R such that fl, fZ,’ f3 together
separate points in Iz [ < 1. Next fl' can vanish at only finitely many
points in |z| < 1. Because of (2) we can then find some f4 in R

with f:; # 0 at each of these points.

> f3, f4 then together separate points in

The functions fl, f
|z | <1 and at each point of |z ] <1 at least one of them has a non-
vanishing derivative. Also fi #0 on |z| =1. Because of (3) there
is a disk: |z| <1+8&,6 >0, in which each f;, 1<1i<4, is analytic.
From the preceding it easily follows now that some subdisk Vo’
|z] <1l+ €57 £o > 0, satisfies (9) and (10). Finally, since fl and
f2 together separate points on |z] =1 and fl' #0 on ]zl =1, one
can prove that there is some ¢, 0<eg< eo such that in the region
1< |z| <1+ ¢ there exists no point a which is identified by both
fl and fz with some point b in |z| <1. Wetake V to be the disk:
lzl <1+ ¢. Then (8) holds for V, and clearly so do (9) and (10), as
V is contained in Vo. Thus V is the required disk.

Let fl, f2 be the functions introduced in the proof of Lemma 2.

We write [fl’fz] for the ring of polynomials in £, f, and C[fl’fz]

for the uniform closure of [fl,fz] on |t| =1. Each g in C[frfz]
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is then the restriction to lt] =1 of a unique function continuous on
E and analytic on E. We denote that function again by g. Let m be
a non-zero multiplicative linear functional on C[fl’ fz]. We say that

m is induced by a point x in E if for all g in Clf, 1,]

(11) m(g) = g(x), or, equivalently, m(fl) = fl(x)

and m(fz) = fz(x).

LEMMA 3: Assume m is induced by no pointon |z| = 1.
Then we can find ¢, with [e [ arbitrarily small, such that
if ¢-= fl + sfz then m(¢) does not lie on {d)(t): |t| = 1}.

m(fl) - £ (t)

1
PROOF: Set X(t) = ———— .
m(fz) - fz(t)

Then X is meromorphic
on |t| =1. Hence we can find arbitrarily small ¢ with X(t) # -¢

forall t on |t] =1. Set ¢ = fl + efz for such an ¢. Assume for

some t0 on It[ =1 we have m(¢) =¢(to). Then

m(fl) + sm(fz) = fl(to) + efz(to)
or

m(fl) - fl(to) = —s(m(fz) - fz(to)).

If m(fz) = fz(to), then m(fl) = fl(to). Hence m is induced by to

contrary to hypothesis. Thus m(fz) # fz(to), whence X(to) = -g.

II-303

-
‘r?



RINGS OF ANALYTIC FUNCTIONS

This is a contradiction. Hence m(¢) ¢ {qb(t): |t| = l}. Q.E.D.

LEMMA 4: Every non-zero multiplicative linear functional

M on C[fl’fZ,] is induced by some point of E.

PROOF: Assume M is induced by no point of Izl =1l. We
shali show that M 1is induced by some point of lz] <1.

By Lemma 3 we can choose ¢ such that ¢ = f1 + sf2 has the
property that M(¢$) # ¢(t) for all t on lt[ =1, Also by choice of
fl, fl' =0 on |t| #1 and f1 takes only finitely many values more

than once on Itl =1. For lsl sufficiently small ¢ retains these

properties, and we may hence assume

(12) ¢' #0 on |t| =1

(13) ¢ takes only finitely many values more than once
on |tl =1.

Also fl and f2 together separate points on |t| =1. Hence

(14) ¢ and fz together separate points on |t| = 1.

If we define [(b,fz] and C[d),fz] in analogy with our earlier defin-

itions for fl and f2 we get
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(15) [¢,f2] = [fl,fz], Clg,1,] = C[fl,fz].

Let now 9 be the image of Itl =1 under ¢ andlet 2 be
the complement of 7y in the plane. Let du be a complex measure
on |t| =1 with
(16) [ g(t)du(t) = 0, all g in [$,£,]

[t]=1
(17) du has no point mass at any point on |t| =1 which ¢

sends into a multiple point on 7.

Let W be a component of . Denote by ¢_1(W) the region
on lz| <1, (which may be empty) which ¢ maps on W. Then each
point on W is covered m times, where m 1is some integer depend-
ing on W, except for a possible finite set of branch-points.

One can now prove the following: there exists a unique mero-

.
4

morphic function k on ¢_1(W) which depends on du, such that for

each z in W, z not a branch-point, we have for all g in

Clg.£,] = Cl). 5, :

m

1 g(t)du(t)
(18) Z glp.)k(p,) = = |
i=1 i i 27i ltlzl o(t) - =z
where Pys---0P  are the points in d)—l(W) which ¢ maps on =z.
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If m = 0, we take the left side in (18) to be zero. Further, there
exists an integer n{W) independent of the measure du such that the
poles of k in d)-l(W) are of order < n(W).

Formula (18) and the assertions regarding k are proved by a
lengthy argument based on (12), (13), (14). This proof is given in 37,
Theorem 2.1. Here I only wish to show how (18) may be used to prove
Lemma 4.

Since m is induced by no point on Itl =1 we can find % in
C[fl,fz] such that M() =1 and 7(t) = 0 at each t on |t] =1 which
¢ takes on a multiple point of 7.

By choice of ¢, M(¢) lies in some component V of Q. Assume
first d)-l(V) has m sheets, m # 0. Let n(V) be the integer attached
to V above. Let Q-0 9, be the points in d)-l(V) which ¢ maps on
M(¢). Assume M is not induced by any one of the q,. We shall obtain
a contradiction from this.

For then we can find some g _ in C[fl’fz] with M(go) =1

n{V)+l

and go(qi) =0,i=1,...,2. Hence if gl = go gl

€ C[fl,fz],
M(gl) =1 and g; has at each q; 2 zero of order >n(V) + 1L
Let now do be any measure orthogonal to C[fl,fz] on

ItI =1. Then 7 do is a measure with the same property and so

satisfies (16). Also qdc satisfies (17), because of the choice of 7.
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Let K be that meromorphic function on d)_l(V) attached to the measure

o

ndo which obeys (18). Then (18) asserts for g = g

: m 1 gl(t)n(t)dc(t)
(19) LgIKp)=o= | —m oo
1 _ F)
izl i i 27 It | 1 o(t) - z
where z is any point of V not a branch-point and PpoeesaP lie in

d)—l(V) over z. Whether or not M($) is a branch-point, (19) yields
1 gl(t)?)(t)dc(t) m

Since K has only poles of order < n(V) and g has zeros of order
>n(V) +1 atthe 4, the right-hand limit is zero. Hence the ineasure

do is orthogonal to the function

(21) W =h .

¢ - M(¢) 1
But do was an arbitrary measure orthogonal to C[fl’fz] on ltl =1.
Hence the function h; on [t| =1 defined by (21) lies in C[fl,fz]. i
We have
(22) g = b6 - M($))-

Hence M(gl)M(‘n) = M(hl)- 0 =0. But M(gl) =1 and M(’))) =1, by

choice of g and 1. This is impossible. Hence M must be induced
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by one of the q; and so by a point in Izl <1
Thus the Lemma is proved, provided qS_l(V) is non-empty.

If d)_l(V) is empty, (18) gives

- gdu :
(23) 0= ltljzl 7 M) all g in C[fl’fz]’

if du satisfies (16), (17).

If do and 7 are as above, we find that do is orthogonal to

whence, reasoning as before, we get M('q) = 0, which is false.
Hence d)—l(V) cannot be empty. The Lemma thus holds.

PROOF OF THEOREM 1: The necessity of (1) and (2) is clear.
Assume (1), (2), (3) and (4) hold for R. Let V be the disk of Lemma
2 and K the closed unit disk and let P be the algebra of all poly-
nomials in fl, vees f4, where these are the functions of Lemma 2.
Because of (9) and (10), P satisfies hypotheses (6) and (7) of Lemma 1.

We assert that also hypothesis (5) is satisfied. For assume the
contrary. Then there is some X ¢ v, |x| > 1, such that

(24) lg(x)| < sup |g(y)|, all g in P.
yl<1
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In particular this holds for g in [fl,fz]. From this it follows by an
easy limit argument that there exists a linear multiplicative function-

al M on C[fl,fz] with
(25) M(g) = g{x), all g in [fl,fz].

By Lemma 4 we can find some p in |z | <1 with Mlg) = g(p), all

g in [fl,fz]. Hence
(26) glp) = g(x), all g in [f,£)].

But this contradicts (8). Hence (5) must hold.
Thus V, K, P satisfy all the conditions of Liemma 1., That
Lemma can therefore be applied, and it yields exactly that P, and

so R, is dense in A. Thus Theorem 1l is proved.

COROLLARY OF THEOREM 1: Let qf)l, cee ’¢n be complex-
valued continuous functions on the unit interval 0<x <1 which k4
together separate points on the interval. Assume

(i) Each ¢, is analytic at each point of [0,1]

(ii) d)i(x) #0 for 0<x<L

Then every continuous function on [0,1] can be uniformly approx-

imated there by polynomials in d)l, ces ,d)n.
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PROOF': Because of our hypotheses we can find a simple
closed analytic curve P in the z = x + iy-plane with the following
properties: the unit interval lies in the interior of P and each ¢i
is analytic inside and on [ and qbi # 0 inside and on B, and the (’bi
together separate points inside and on $. By a conformal map of the
interior of P on the open unit disk we transform the ring Ro of
polynomials in ¢l, ven ,d)n into a ring R of functions analytic on the
closed unit disk E. This ring R then satisfies hypotheses (1) through
(3). By a suitable choice of B and using (ii) we also get (4). Hence
Theorem 1 applies to R. Hence R 1is dense in A, Hence R0 is
dense in the corresponding algebra of functions defined on B and its
interior. In particular the function z is uniformly approximable there
by polynomials in ¢1, .en ,¢n. But every continuous function on [0,1]
is a uniform limit on [0,1] of polynomials in z. Hence every con-
tinuous function on [0,1] can be uniformly approximated on [0,1] by

polynomials in qSl, e ,¢n. This was the assertion of our Corollary.

NOTE: Without hypotheses (i) and (ii) the conclusion of

the Corollary is no longer true. (Cf. [1].)

Brown University
Providence, Rhode Island
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SPECTRAL DECOMPOSITION OF OPERATORS IN A BANACH SPACE
AND THE ANALYTIC CHARACTER OF THEIR RESOLVENT

Frantisek Wolf

The purpose of this paper is to study linear operators T on
a Banach space, whose spectrum o(T) lies on the unit circle C.
Results have been established mainly by J. Wermer and the author.
J. Wermer [4] studied the existence of invariant subspaces while
the author was mainly interested in the possibility of obtaining a
generalization of the spectral decomposition theorem. The two prob-
lems are closely related. We start from the resolvent R)\(T)
= (A\I - T)_l, which in this case is an operator depending analytically
on )\ for I)\l #1. This approach is close to some work by Kothe
[2, 3] and Grothendieck [1] who studied the topology of the situation
and duality theorems. I propose to review the different connections
between these studies and the rather unexpected link to the theory of
quasi-analytic periodic functions.

Among the familiar operators closest to our class are the
unitary operators. They also have their spectrum on the unit circle.
Their spectral decomposition

§T) = [ f(e )E(d6)
C
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establishes a mapping f —> £(T), from the Banach algebra Ba of
bounded Borel-measurable functions into the bounded operators in
Hilbert space. It also establishes a mapping from the Borel-measurable
sets S of o(T) to invariant subspaces M(S) in Hilbert space.

This mapping is of a local character and -- this is one of the most
essential features of the spectral decomposition theorem -- a change

of f in S will affect f(T) only in the subspace M(S). My main
concern has been to see how general we can let T be and still pre-

serve this local character of the mapping.

The local character depends upon the fact that there are
enough 'local functions' in Ba: We take f ¢ Ba to be zero in S
and different from zero elsewhere. There exists such an f. Then
M(S) will be the null-space of f(T). It can be shown that M(S)
depends only on S and not on the choice of f. To every non-empty

section of o{(T) corresponds a non-zero subspace. If g =o(T) - S

S

contains a non-empty section of o(T), then M(S) is also different
from the whole space,.

So, if we want to establish such a correspondence between
subsets S of o(T) and invariant subspaces for sufficiently many

S, then we need a mapping from a Banach algebra of functions to
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bounded operators, such that the Banach algebra contains sufficiently
many functions. It is especially necessary that it contain "local
functions', i, e. functions that are zero outside arbitrarily small
intervals. This will furnish a mapping clos ely paralleling the one
for unitary operators.

The first step in generalization is to allow T to be such
that its resolvent is O(l/]1 - [A] In-Z) ‘for a suitable n. The
details and proofs of the results mentioned from now on are given
in a paper by the author [7].

Examples of such operators are easy to give: The translation
and hence also the differentiation operators in LZ(—oo, 0; o) are of
this nature for suitable measures o.

It has been proved that for any f ¢ Cn, the Banach space of
n times continuously differentiable periodic functions, f(T) can be
defined by means of a distribution. This I write for the sake of
convenience in a form used by Bochner in the theory of trigonometric
integrals: £(T) = jf(eie)dnE(e) (d"E(8) is essentially E(n)(e)de,

but E(n)

need not actually exist), Here E(6) turns out to be a
continuous operator-valued function of 6 and, since f ¢ Cn, the

integral is defined by integration by parts. Wherever E is a

polynomial of order less than n, there the values of f do not matter.
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If we eliminate these intervals from the domain of integration, we

. i i6, n R .
obtain {(T) = f(e” )d E(6). Formally this is a very satisfactory

o(T)

analogue of the spectral decomposition theorem. It is interesting to
note other characterizations of this class I' of operators for which
there exists an n so that this last formula holds. The operators in
I' are also exactly those for which there exists an n such that
R)\(T) = O(l/[1 - || ln). The n's in the two definitions don't have
to be the same. They may differ by anything less than two units.
I" is also the class of operators such that there exists an n for
which ||T™[]| =0(|m|®) for +m =0,1,2,... .

The construction of invariant subspaces is almost the same
as in the classical case For any S closed, we can construct an
f(ele) , '"completely" vanishing on S, i.e. vanishing with its first
n-1 derivatives. The null-space of this f(T) is an invariant sub-
space M(S). It is non-zero under the same conditions as before. 254

The existence of invariant subspaces has been pushed further
by Wermer [4]. His main result is: If there exists a sequence
{d_}, such that HTnll <d s, d >1, d non-decreasing,

n — ]n! n — n
® 2
log dn/n decreasing, X log dn/(l +n ) <o, then, if o(T) has at
n=1
least two points, T has a non-trivial invariant subspace. Similarly

the author proved later:
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2
If | log+log+ mq?.x l [R i
1/2 re
ence between closed intervals and invariant subspaces. There are

(T)] |dr < w0, then there is a correspond-

functions f e Ba for which f(T) is a bounded operator and which
vanish outside an arbitrary interval.

Let us examine this Banach algebra of functions for which
f(T) is a bounded operator. How can we get the maximal Banach
algebra for a given operator? If f is analytic on C, then £(T)
can be defined in the ordinary way as a bounded operator £(T)
= IiR)\(T)f()\)d)\, where K denotes two rectifiable curves surround-
ing o(T) and lying inside the domain of analyticity of f.

Into this algebra let us introduce a norm for f:
| Ifl 1= | |£(T) | |, where | [£(T)|] denotes the operator norm.,
This normed algebra is in general not complete. Its completion
is the desired Banach algebra which exhibits many properties of
the operator T.

If the Banach algebra has sufficiently many functions then we
can repeat the reasoning and establish a local mapping S —> M(S).
If this is not so, then there are many different alternatives. For

instance, suppose that for a particular point A, mo non-zero function

of Ba can vanish in the neighborhood of A We could say that
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—

the Banach algebra behaves like a class of functions quasi-analytic

at one point, Or this could happen at all points of a set. It is
obvious that with quasi-analytic Banach algebras, we cannot repeat '
our construction. This might be an indication that no such mapping

S —> M(S) exists, except in the trivial cases when S is empty or ;
S = o(T).

For an example we may consider an operator about which
Wermer [5] had proved that it did not have any invariant subspaces.
In the Hilbert space of two-sided sequences a = {a.n}, with the inner
- Inl/10g n]

d product (a, b)= X a .b_pn where P, = take ;

. n ‘
s T{an} = {;3.n__1 }o I £T)=2Z2 q T represents an operator with bound \
—lnl/ 2 1oglnl

? M, then it can be shown that lqn] <VMe From this

it follows easily that the class of functions f{ for which f£(T) is
bounded is such that the f(el)‘) form a quasi-analytic class.

It seems that this is a new construction of quasi-analytic ,

g

classes. Operators need not have a uniformly singular makeup in
different parts of the spectrum. Hence in general, our Banach
algebra may be quasi-analytic on one part of the spectrum, analytic
on another part and full of local functions in a third. This general

situation seems not to have presented itself before. However, there
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are classes of functions, studied by Beurling and by Wermer [6],
that have the property that any function vanishing near infinity must
be identically zero.

Now, an obvious question is: Is there a scalar situation
that is similar? Is it possible to generate quasi-analytic Banach
algebras by the scalar analogue of the situation described?

Suppose u(f(z)) is a linear functional on the space of
functions £(z) analytic on the unit circle. Then u()\;_z-) is well-
defined and analytic in the parameter \ both inside and outside of
the unit circle. It is essentially Fantappié's indicatrix. It in turn
determines u uniquely: Indeed, as Ké&the [3] shows u(f(z))

1

, 1
=5 g{f(x)u()\ -

f — f(T), then we see that f(T) corresponds in the scalar case to

Z) d)x. If we compare this with the linear mapping

u({f(z)) and (\ - T)—1 = R)\(T) corresponds to u( ). Hence,

)
just as the indicatrix determines the linear mapping (or generalized
distribution, Ké&the's "Randverteilung'), so R)\(T) determines the
spectral mapping f —> £(T).

The first who seems to have used a pair of analytic functions,
determined in complementary domains of the complex plane as

representing a generalized distribution was Carleman in his

"L'Intégrale de Fourier'. He defined the Fourier transform of
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certain functions, which normally do not have a classical Fourier
transform, as a pair of functions analytic in the upper and lower
half-planes respectively. There is no doubt that the same idea
must be implicit in‘work of Bochner and Wiener.

The problem of generalized distributions and the related
Banach algebras of functions is evidently so rich in ramification in
the most unexpected directions that any further work should prove

very fruitful.

University of California
Berkeley, California
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