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Annals of Mathematics, 103 (1976), 103-161 

Representations of reductive groups 
over finite fields 

By P. DELIGNE and G. LUSZTIG 

Introduction 

Let us consider a connected, reductive algebraic group G, defined over a 
finite field F, with Frobenius map F. We shall be concerned with the 
representation theory of the finite group GF, over fields of characteristic 0. 

In 1968, Macdonald conjectured, on the basis of the character tables 
known at the time (GLn, SpJ, that there should be a well defined correspond- 
ence which, to any F-stable maximal torus T of G and a character 0 of TF 

in general position, associates an irreducible representation of GF; moreover, 
if T modulo the centre of G is anisotropic over F,, the corresponding repres- 
entation of G' should be cuspidal (see Seminar on algebraic groups and 
related finite groups, by A. Borel et al., Lecture Notes in Mathematics, 131, 
pp. 117 and 101). In this paper we prove Macdonald's conjecture. More 
precisely, for T as above and 0 an arbitrary character of TF we construct 
virtual representations RO which have all the required properties. 

These are defined in Chapter 1 as the alternating sum of the cohomology 
with compact support of the variety of Borel subgroups of G which are in a 
fixed relative position with their F-transform, with coefficients in certain 
G F-equivariant locally constant l-adic sheaves of rank one. This generalizes 
a construction made by Drinfeld for SL2 (see Ch. 2). 

In Chapter 4 we prove a character formula for RI, based on the fixed 
point formula of Chapter 3. This character formula is in terms of certain 
"Green functions" on the unipotent elements; in Chapters 6, 7, 8 we prove 
that these Green functions satisfy all the axioms predicted by Springer, 
Kilmoyer and Macdonald ([9], [12]). 

By 6.8, 4RI is irreducible if 0 is in general position and the vanishing 
theorem (9.9) gives an explicit model for it provided that q is not too small 
(if G is a classical group or G, any q will do; in the general case q > 30 is 
sufficient). 

In Chapter 10 we study the irreducible components of the Gelfand-Graev 
representation of GF, assuming that the centre of G is connected. The proof 
uses the results of Chapter 5 together with the disjointness theorem (6.2). 
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Finally, in Chapter 11 we discuss the case of the Suzuki and Ree groups. 
It would be very desirable to find formulas for the Green functions more 
explicit than (4.1.2). Such formulas are known for GL, (Green [41), Sp4 
(Srinivasan [13]) and G2 (Chang, Ree [2]). Very recently, Kazhdan has proved, 
using results of Springer, that the Green functions can be expressed as 
exponential sums on the Lie algebra (see [12]) provided that the characteristic 
is good and q is not too small. 

Some of the results in this paper were announced in [7], [8]. 
The second author would like to thank the I.H.E.S. for its hospitality 

during part of the time of preparation of this paper. 
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Conventions and standard notations 

0.1. In this paper, k is always an algebraically closed field and p is its 
characteristic exponent. The following assumptions and definitions will be 
in force in Chapters 4 to 8, in Chapter 10, and in parts of Chapters 1 and 9. 

(0.1.1) p is a prime, and k is an algebraic closure of the prime field Fp 
of characteristic p. For q a power of p, Fq is the subfield with q elements of 
k. G is a reductive algebraic group over k, obtained by extension of scalars 
from Go over Fq. We denote by F the corresponding Frobenius endomor- 
phism F: G G (as well as the Frobenius endomorphism of any k-scheme 
defined over Fq). 

0.2. 1 is a prime different from p, and Q, is an algebraic closure of the 
l-adic field. When there is no ambiguity on 1, we will write simply HC(X) 
(resp. Hi(X)) for H,(X, Q1) (resp. Hi(X, Q1)) (l-adic cohomology of X, a 
scheme over k). The groups Z/ln(1) are the groups xe1n(k) of ln-roots of unity 
in k; they form a projective system, with transition maps x - xl'-7; the 
projective limit is Z,(1). One defines Z,(n) - Z,(1)?n, and Zl(-n) the dual 
of Z,(n). The symbol (n) is for a Tate twist: tensoring with Z,(n). We will 
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make an accidental use of the similarly defined group Zp,(1)=lima , 
0.3. For H a finite group, A(H) is the Grothendieck group of the finite 

dimensional representations of H over QC. If f and f' are class functions on 
H, with values in a cyclotomic field (often c Q1), the inner product <f, f'>H 

(or simply <f, f'>) is (1/1 HI) f(x)f'(x), where - is the automorphism in- 
ducing C --1 on the roots of unity. The same notation < , > will be used 
for the inner product of elements of 9k(H) 0) Q, identified with their char- 
acters. 

0.4. The length function on a Coxeter group W (with canonical gener- 
ators sl, *. , sn) will be denoted by 1( ). A reduced expression for w e W is 
a decomposition w = si, s* i with 1(w) = k. 

0.5. Miscellaneous: 
pro: ith projection (as in pr1: X x X X); 
XT: the fixed point subscheme of the endomorphism T of the 

scheme X (for instance: GF = Go(Fq)); 
p' (in index): away from p (as in Zp,, completion away from p) or the 

subgroup of elements of order prime to p (as in (Q/Z)p ); 
ad g: the inner automorphism x gxg', or maps deduced from 

it; 
1, or e: the identity element of a group; 

Tr(f, V*), for f an endomorphism of a graded vector space, is 

E (- 1)' Tr (fy Vi) ; 

reductive: reductive groups are meant to be connected and smooth. 
The Jordan decomposition of an element g C G (G as in (0.1.1)) is g = su where 
s is a semisimple element and u is a unipotent element commuting with s. 

0.6. We will often identify a scheme over k with the set of its k-rational 
points. This should cause no confusion. 

1. Some basic definitions 

1.1. Suppose that in some category we are given a family (Xi)iI of 
objects and a compatible system of isomorphisms Tj: Xi > Xi. This is as 
good as giving a single object X, the "common value" or "projective limit" of 
the family. This projective limit is provided with isomorphisms vi: X Xi 
such that j'iu = qaj. We will use such a construction to define the maximal 
torus T and the Weyl group W of a connected reductive algebraic group G 
over k. 

As index set I, we take the set of pairs (T, B) consisting of a maximal 
torus T and a Borel subgroup B containing T. For i C I, i = (Ty B), we take 
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Ti = T, W. = N(T)/ T. The isomorphism 'i3 is the isomorphism induced by 
adg where g is any element of G conjugating i into j; these elements g form 
a single right Ti-coset, so that (pi is independent of the choice of g. 

One similarly defines the root system of T, its set of simple roots, the 
action of W on T and the fundamental reflections in W. 

Let F: G-Gbe an isogeny. For any i CI, i=(T.B),F(i)=(F(T),F(B)) is 
again in I; F induces an isogeny F: Ti) TF(i) and an isomorphism F: Wi WF(i). 
The corresponding endomorphism (resp. automorphism) a-'i)Fai of the torus 
T (resp. of the Weyl groups W) is independent of the choice of i; we say that 
it is induced by F. 

1.2. Let X (or XG) be the set of all Borel subgroups of G. The group G 
acts on X by conjugation, and X is a smooth projective homogeneous space 
of G. For each Borel subgroup B of G, B is the stabilizer of the correspond- 
ing point of X, hence there is a natural isomorphism GIB - X: g v-- gBg-'. 

The set of orbits of G in X x X can be identified with the Weyl group 
W of G as follows: for any i (T, B) as in (1.1), use the composite bijection 

W N( T)IT B\GIB G\(GIB x GIB) G\X x X; 
Ui ~~~~~~~~~(e, g) 

this is independent of the choice of (T, B). We denote by O(w) the orbit 
corresponding to we W; this is the orbit of (B, &Bil-'), where lb e N(T) 
represents w. We shall say that two Borel subgroups B', B" of G are in 
relative position w, w C WY if and only if (B', B") C O(w). In diagrams, we 
will picture this by B' - B". 

The basic properties of Bruhat decomposition can be expressed as 
follows: 

(a) If w = w1w2, with l(w) = 1(w1) + 1(w2) then 
(a,) (B', B") c O(w1) and (B", B"') e O(w2) (B', B"') e O(w); 
(a2) if (B', B"') e O(w), there is one and only one B" such that 

(B', B") c O(wl) and (B", B"') G 0(w2). 
On the scheme level: O(w1) x x 0(w2) - O(w). 
(b) Let s be an elementary reflection and let B be a Borel subgroup. 
(b1) P = B U BsB is a (minimal parabolic) subgroup, i.e., if (B', B") G 0(s) 

and (B", B"') C 0(s), then either (B', B"') e 0(s) or B' - B"'. 
(b2) The quotient L of L = P/UP (U, = unipotent radical of P) by its 

centre is isomorphic to PGL(2). The space XL is hence a projective line. The 
inverse image map XL - X has as image the set of Borel subgroups B' in 
relative position e or s with B. 

(b3) Via either projection, 0(s) - 0(s) U O(e) c X x X is hence a fibre 
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space over X, with fibre P,. It is provided with the section O(e); this reduces 
its structural group from the projective to the affine group. The complement 
0(s) of that section is a fibre space with fibre the affine line. 

1.3. The assumptions (0.1.1) are in force in the rest of this chapter. 
The scheme X is hence defined over Fq and provided with a Frobenius map 
F: X-? X. 

DEFINITION 1.4. For w in the Weyl group W of G, X(w) c X is the 
locally closed subscheme of X consisting of all Borel subgroups B of G such 
that B and F(B) are in relative position w. 

One can also regard X(w) as the intersection, in X x X, of O(w) with 
the graph of Frobenius. It is easily checked that this intersection is trans- 
verse. The orbit O(w) being smooth of dimension dim (X) + I(w), it follows 
that X(w) is smooth and purely of dimension l(w). The subscheme X(w) of 
X is GF-stable. Hence, for each prime number I # p, GE acts on the l-adic 
cohomology with compact supports of X(w). 

DEFINITION 1.5. R1(w) is the virtual representation 

1-)WHC(X(w), Ql) 
of GF (an element of the Grothendieck group of representations of GF over 
Q). 

For w = e, X(w) is of dimension 0; it is the set of rational Borel sub- 
groups, and R'(w) is induced by the unit representation of BF, where B is an 
F-stable Borel subgroup. 

It will follow from (3.3) that the character of R'(w) has integral values, 
independent of 1. This will justify omitting I from the notation; R'(w) could 
be also regarded as a complex virtual representation of GF. 

An element of the Weyl group W is said to be F-conjugate to w C W, if 
it is of the form wlwF(w,)-', for some w1 e W. We denote by W' the set of 
F-conjugacy classes in W. We shall recall in (1.14), that the GF-conjugacy 
classes of F-stable (i.e., Fq-rational) maximal tori in G are parametrized by 
wo. WF. 

THEOREM 1.6. R'(w) depends only on the F-conjugacy class of w. 

Let w and w' be F-conjugate. 
Case 1. w = w1w2, w'= w2F(w1) and l(w) = (w1) + l(w2) = 1(w2) + I(F(w,)) = 

l(w') (0.4). For Be X(w), there is a unique Borel subgroup qB such that 
(B, uB) C 0(w1) and (aB, FB) e 0(w2); we have the diagram of relative posi- 
tions: 
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B -> F(B) 
A \F(w1) 

W1 \J /W2 \ 

aB -F(aB) W2F(w1) 

(the bottom one because t(w2F(wj)) = (W2) + I(F(w1))), and qB C X(w'). By 
the same argument applied to w2F(w1) and F(w,)F(w2) = F(w), we get a map 
z: X(w') X(Fw). The diagram 

1F2 {F 

X(Fw) - X(Fw') 

is commutative. The vertical maps induce equivalences of etale sites, hence 
so do z- and a [SGA 1, IX, 4.10]. The resulting isomorphism 

H,,*(X(w')) '_, H,*(X(w)) 

is GF-equivariant, whence (1.6) in this case. 
Case 2. For some fundamental reflection s, we have w' = swF(s) and 

l(w') = 1(w) + 2. For B e X(w'), we can find two Borel subgroups -B, 6B 
such that (B, -B) e O(s), (TB, 3B) e O(w), (3B, FB) e O(F(s)); moreover, YB 
and 3B are uniquely determined by these requirements. We define a parti- 
tion X(w') = X1 U X2 by 

Xi = {B e X(w') 13B = F(YB)}, X2 = {B e X(w') 13B # F(YB)}. 

Note that X1 is a closed subscheme of X(w'), while X2 is an open one. We 
have Y: X, - X(w) and, for B' e X(w), --'(B') is the set of all Borel subgroups 
B such that (B, B') e O(s); hence -1'(B') is an affine line over k, and X1 is 
(via -) an affine line bundle over X(w). It follows that Y induces an isomor- 
phism 

(1.6.1) Hi(X1) -> Hh(X(w))(-1)X, i > 0 

If B e X2, we have 

(3B, FB) e O(F(s)), (FB, F(YB)) e O(F(s)), 3B # F(YB) 

hence (3B, F(YB)) e O(F(s)). Since 

(F(YB), F(3B)) e O(F(w)), I(F(sw)) - I(F(s)) + I(F(w)), 
it follows that (3B, F(3B)) e O(F(sw)). Thus we have 3: X2 X(F(sw)). Let 
X2 = {(B, B) e X2 x X(sw) I F(B) = 3B} and let 3': X2- X(sw) be defined by 
3(B, B) = B; we define also p: X2' -X2 by g(B, B) = B. We have a cartesian 
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diagram 

X2' X(sw) 

(1.6.2) {F 

X2 X (F(sw)) 
For any B e X(sw) we denote by sP the unique Borel subgroup such that 
(B, sB) e 0(s), (sB, FB) e O(w). It is easy to see that ̀ 3''(B) can be identified 
with the set of Borel subgroups B such that (B, B) e 0(s), B - sB; it follows 
that (3'-(B) is an affine line with a point removed. Thus X2' is (via 3') a line 
bundle over X(sw) with the zero-section removed. Since the vertical arrows 
in (1.6.2) induce equivalences of etale sites, we have a canonical exact 
sequence (see [5]): 

(.6.3 
* * H'-l(X(sw)) - Hc(X2) - Hj-2(X(sw))(_-1) 

(1.6.3) 
> HC(X(sw)) -b.... 

It can be proved that the maps a in (1.6.3) are zero; this fact will not be 
used here. 

Note that (1.6.1) and (1.6.3) are GF-equivariant and that GF acts trivially 
on Q,(-1). It follows that for any g e GF: 

tr (g*, H*(X2)) = 0, 

tr(g*, Hc*(Xj)) = tr(g*, HC*(X(w)) . 

If one uses the exact sequence 

* * * - , HfC- 1(X1) - HI(X2) - HC(X(w')) , HC(X1) -* 

it follows that 

tr(g*, HC*(X(w'))) = tr(g*, H*(X1)) + tr(g*, HC*(X2)) 
- tr(g*, HC*(X(w))) 

and 1.6 is proved in this case. 

The general case. It suffices to treat the case where w' = swF(s) for a 
fundamental reflection s. By permuting, if necessary, w and w' (w = sw'F(s)), 
we may even assume that l(w') ?> (w). If l(w') > I(w) we are in case 2. If 
l(w') = I(w), the following lemma shows that either we are in case 1 (with w 
and w' possibly interchanged) or that w = w'. 

LEMMA 1.6.4. Let s, t be two fundamental reflections in W and let w G W 
be such that l(w) = l(swt). Then either w = swt, or 

l(sw) = l(w)-1, or l(wt) = I(w)-1. 
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Let w = s1s2 .. s, be a reduced expression for w (0.4). Assume that 
l(wt) = 1(w) + 1; then wt = s1s2 * * * skt is also a reduced expression. We have 
l(swt) = l(wt) - 1. It follows (cf. Bourbaki, [1, Ch. IV, ? 1, Lemme 31) that 
either there exists j, 1 < j < k with ss, . .. sj = s, ... sj-lsj or we have 
SS1 . . . Sk = Sis.t. In the first case, we have w = ss, . . s_1sj+l . . . Sk and 
l(sw) = 1(w) - 1; in the second case we have w = swt and the lemma is 
proved. 

1.7. Let us choose a maximal torus T* in G and a Borel subgroup B* c G 
containing T*, with unipotent radical U*. The quotient E= G!U* is a 
T*-torsor (= right principal homogeneous space of T*) over X = GB *. For 
x e X, the fibre E(x) of the projection E X is 

E(x) = {geGIge* =x)U* 

where e* is the point of X corresponding to B*. 
Let tb e N(T*) define the element w in the Weyl group W via the isomor- 

phism a(T*, B*): W > N(T*)/T*. If x, ye X are in relative position w, 
the g's in G such that ge* = x and giwe* = y form a torsor A(x, y) under 
B* nt B*tbl = T* (U* nr TU*ilrl). For g e A(x, y), the class of gtb in E(y) 
depends only on the class of g in E(x). This defines a map E(x) E(y), which 
we denote as right multiplication by tb. We have the formulas 

(1.7.1) (ut)b = (uti) ad tb-r(t), 

(1.7.2) u(tbt)- (utb)t. 

We will express (1.7.1) by saying that *T is a w-map of T*-torsors. It is 
induced by a w-map of T*-torsors over O(w) 

*w: pr* E- pr* E. 

Assume that w = w1w2, w = tbl2 and that 1(W) = I(W1) + 1(W2); then for 

x, y, z c X with (x, y) c O(w1) and (y, z) G O(w2), we have (x, z) c O(w) and 

(1.7.3) uw = (u*1)i2. 

1.8. We now assume that T* and B* are F-stable. The identification 
q(T*, B*) of T* and N(T*)!T* with the torus T and the Weyl group W is 
then compatible with F. For w in the Weyl group, we denote by T(w) the 
torus T, provided with the rational structure for which the Frobenius is 
ad (w)F. We have 

T(W)F {t c T* I ad (w)F(t) = t} 
For x C X, the Frobenius map induces a map F: E(x) E(F(x)), with F(ut)- 
F(u)F(t). For x e X(w), we put 
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E(x, Th) = {u C E(x) I F(u) = uth}. 

This is a T(w)F-torsor. The E(x, qb) are the fibres of a map 

wr: X2(wb) > X(w) , with X(wb) c E I X(w) a T(w)F-torsor over X(w) . 

The action of G on E restricts to an action of GF on X(wl). 
Up to isomorphism, the GF-equivariant T(w)F-torsor X(wb) over X(w) is 

independent of the lifting qb of w in N(T*): for W' = wbt, there exists t1 
with ad w-'(t,)F(t,)-' = t and the map u ut, induces an isomorphism 
X(tw) X(w'). 

The groups GF and T(w)F act on HC*(X(tb), Q) by transport of structure. 
For any 0 c Hom (T(w)F, Q *) we denote by H*(X(1k), Q)o the subspace of 
HC*(X(Wb) Ql) on which T(w)F acts by 0. 

DEFINITION 1.9. RO(w) is the virtual representation 

E 1_])'H,(X (tb) Q 1) 
of GE (an element of the Grothendieck group of representations of GE over Q1). 

The character 0 can be used to transform the T(w)F-torsor X(b) into a 
local system of Q1-vector spaces of rank one To over X(w), provided with 
0: X(il) -> ToY, (xt) = 0(x)0(t). 

The morphism w: X(b) X(w) is finite and 

wr*Q1 = To 

The sheaf Y0 is the subsheaf of r*Q, on which TF acts by 0, hence 

H,*(X(l), Qi)o = H,*(X(w), S0o) 

In particular, for 0 = 1, 

R'(w) = E(-l)'H,(X(w), Q1) 
so that Definition 1.9 is compatible with (1.5). 

Example 1.10. For w = qb = e, r: X(wh) X(w) becomes the projection 
wr: GF!U*F G GF!B*F, and RO(w) is the representation of GF on the space of 
functions on GF satisfying 

f (gtu) = d(t) lf (g) 
GF acting by (g *f )(x) = f (g'x) (induced representation). 

1.11. The Borel subgroup adgB* is in X(w) if and only if adgB* and 
ad FgB * are in relative position w, i.e., if and only if g'-Fg C B *hB * (where 
il e N(T*) represents w): 

(1.11.1) X(w) = {g e G I g-'Fg C B *wB *JIB 
If a Borel subgroup B is in X(w), one can find g e G such that adgB* is 
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B and adgadtwB* = FB: 

(1.11.2) X(w) = {g e G I g-lFg e iB*}JB* n adwB* 

where B* n adtwB* T* .( U* n adwk U*). Changing g to gt, we can normalize 
g so that we have also g-'Fg e twU*: 

(1.11.3) X(w) = {ge G I glFg e w U*}!T(w).(* (U nadwlU*). 

A point in X(wl) is defined by a Borel subgroup B, plus g e G such that 
adgB* = B, adgadwhB* = FB and gw = Fg mod U*: 

(1.11.4) X(Wb) = {g e G I g-'Fg ?wU*}!U* n adwhU*. 

COROLLARY 1.12. The following assertions are equivalent: 
(i) X(w) is affine; 
(ii) X(wh) is affine; 
(iii) Let p be the action of U* n adwhU* on U* defined by 

p(u)v = adil-'(u)vF(u-'); 

then U*!p(U* n adwtU*) is affine. 

Put S = {g e G I g-1Fg e wb U*}. The map f: S ) U*: g P-> i-l1g-Fg induces 
an isomorphism GF\S ) U* and is such that for ue U* n adwtU*, 
f(gu) = p(u)-lf(g). Hence, 

GF\X(h) U*!(U* n adwhU*). 
As X(b)!T(w)F = X(w), it only remains to use the fact that a space and a 
quotient of it by a finite group are simultaneously affine or not. 

We will have to use another description of r: X(wb) X(w). First, an 
easy lemma: 

LEMMA 1.13. Let J be the set of pairs (T, B), T an F-stable maximal 
torus and B a Borel subgroup containing T. The map h which to (T, B) 
associates the relative position of B and FB induces a bijection 

GF\j-, W 

The proof will be given in (1.15). 
If we use (T, B) c J to identify W with N(T)/T, we have 

(1.13.1) h(T, adwl'B) = w-'h(T, B)F(w), 

where wl c N(T) represents w, hence 

COROLLARY 1.14. The map h induces a bijection 

{GF-conjugacy classes of F-stable maximal tori}-* Wo. 

Here is another description of h: for (T, B) c J, if a: T -+ T and o: W W 
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(W = N(T)/T) are defined by (T, B), then 
aFa-1 = ad h(T, B) o F: T > T. 

To give h(T, B) is the same as to give adh(T, B) o Fc W o Fc End(T), and 
to give the F-conjugacy class of h(T, B) is the same as to give ad h(T, B) o F 
up to W-conjugacy. 

1.15. The space of maximal tori of G can be identified with the homo- 
geneous space G/N(T*), and the space of maximal tori marked by a contain- 
ing Borel subgroup can be identified with G/T*. The group T* being the 
connected component of N(T*), (1.13) is a special case of the general result 
described below. 

Let G. be a connected algebraic group over Fq and let x: -0 E0 be a 
morphism of G.-homogeneous spaces. We denote by G, E, E the correspond- 
ing objects over k, and we assume that the stabilizer S(e) of e c E is the 
connected component of the stabilizer S(w(ae)) of r(e) e E. Since any Go- 
homogeneous space has a rational point, the existence of Eo imposes no 
condition on E0. 

The groups S(e)/S(e)? form a local system on E, which becomes constant 
on E; we denote by W its constant value on E. For ~ e -E, we have an 
isomorphism ax(e): W S(w(a ))/S(w(e)) and, for f = ge, we have ax(f) = 
adgax(e). We let the group W act on E on the right, by w = a(e)(w)e; in 
this way, E becomes a W-torsor (= principal homogeneous space) over E. 

The group W is acted on by F, with F(e w) = F(e )F(w). The set WS of 
F-conjugacy classes in W is the set of orbits of the action of W on itself by 
w w-wF(w-)-1. 

PROPOSITION 1.16. For e e EF and ~ e E above it, define h(e, e) e W by 
F(e) = e.h(ee ). 

(i) The map h induces a bijection from the set of GF-orbits in 

{(e, e) IeEF, w(E ) e} to W. 

(ii) We have h(e,ew) = w-1h(e, e)F(w). Hence the map h induces a 
bijection from GF\EF to the set of F-conjugacy classes in W. 

We will only prove (i). Let Y be the set of ~ e E such that w(e ) ? EF. 

If e% e EF, the map g + ge0 identifies X with {g G g-'Fg ? S(u(Q))}S0e0). 
The Lang isogeny g-'Fg is an isomorphism G'\G G, hence the map 
geo + g-'Fg induces a bijection 

GF\X > (Sw(CO))/(S(CO) acting by s'xF(s)) . 

The orbits of this action of S(eO) are just the usual cosets, and the resulting 
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bijection GF\X - W is the h above. 

DEFINITION 1.17. Let T be an F-stable maximal torus and let B be a 
Borel subgroup containing T, with unipotent radical U; let w be the relative 
position of B and FB. 

(i) XTCB is X(w). The map go adgB induces isomorphisms 

XTCB = {g ? G I g-'Fg ? BF(B)}/B 
= {ge GI g-'Fge FB}/B n FB 
={g C G I g-'Fg C FU}/ TF*(unFU). 

(ii) XTCB is {g ? G I g-'Fg e FU}/un EU. 
We have a projection map w: XTCB XTCB, for which XTCB is a GF-equiv- 
ariant TF-torsor over XTCB; GF acts by left multiplication and TF by right 
multiplication (it normalizes U n EU). 

1.18. Let Th C N(T*) be a representative of w. If x' C G is such that 
ad x'(T *, B *) = (T, B) then B and FB = ad Fx'B * are in relative position w, 
and FB contains T, hence FB = adx'ad hB* and x'-'F(x') C ubB* n N(T*) = 
wTT*. Replacing x' by x = x't (te T*) one can achieve x-'F(x) = h. The x 
such that adx(T*, B*) = (T, B) and x-'F(x) = T form a T*F-torsor. For 
such an x, adx induces an isomorphism T(w) T (hence T(w)F TF); this 
isomorphism is independent of x. 

PROPOSITION 1.19. Let T, B, U, w be as in (1.17) and x, Th as in (1.18). 
The map g gx- induces an isomorphism from the GF-equivariant T(w)F_ 

torsor X(wil) over X(w) (or rather its model (1.11)) to the GF-equivariant 
TF torsor XTCB over XTCB (or rather its model (1.17)). 

This is a straightforward computation. 

1.20. The cohomology of XTCB is acted on by GF and TF. For any 
character 8: TF Q* we put as in (1.8): 

RTCB = E ( 1) Hc(XTcB Qi)o 

(an element in the Grothendieck group of representations of GF over Q). 
By (1.19), for x as in (1.18), we have 

Rf = Ro~adx(W) 

We shall see in Chapter 4 that RTCB is independent of B. For g e GF such 
that adg carries T, B, and 8 to T', B', and 8', we have clearly RTCB = R IcB'a 
hence RfCB will eventually depend only on the GF-conjugacy class of T and 
on the orbit of 8 under (N(T)/T)F. 

The end of this chapter will be used in the proof of 7.10 only. 
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1.21. Isogenies. Let T be an F-stable maximal torus of G, and let Z 
be the centre of G. We denote G x Z T the quotient of G x T by the subgroup 
{(z, z-) zG Z}. 

Let B be a Borel subgroup containing T. The action x v-* gxt of GF x TF 
on XTCB is induced by an action of (G x Z T)F, given by the same formula. 

COROLLARY 1.22. On H*(XTCB, Qi)o, ZF acts by the character 8 | ZF. In 
particular, on any irreducible representation occurring in R'CB, ZF acts by 
8 | ZF. 

Let w: GO - G be the simply connected covering of the derived group of 
G. T = r-'(T), B = ;r1(B) and let Z be the centre of G. 

PROPOSITION 1.23. One has TF/w(TF) > GF/w(GF). 

Injectivity is clear; we have to check the surjectivity of the map 
(Tx G)F GF induced by q': Tx GC; G:t, g-twr(D). Via A', Tx G is a 
T-torsor over G (with (t, g) * T = (ti, t`g)), and one applies Lang's theorem 
to the connected group T. 

1.24. Let h = A -+ B be a homomorphism of finite groups and let X be 
a space on which A acts. The induced space IndB (X) (unique up to unique 
isomorphism) is any B-space I, provided with an A-equivariant map A: X 
I, such that for any B-space Y. HomB (I, Y) HomA (X, Y). One has 
IndA (X) = llbeB'A bp(X), and 9p(X) - Ker (h)\X. 

PROPOSITION 1.25. The (Gx Z T)F-space XTCB is induced by the (G x ZT)F 

space XTCj.B 

LEMMA 1.26. In the diagram 

0 - Ker TF TF - coker - 0 

l(l) l(t, 1) I't' 1) 1(2) 

o -> Ker-> (T X ZG)F - (T x Z G)F coker-> 0 

1 ~ 1. 
(G/Z)F =_== (G/Z)F 

the maps (1) and (2) are isomorphisms. 

Indeed, T x Z G (resp. T x Z G) is a T (resp. T)-torsor over G/Z = G/Z, 
hence, since T and T are connected, (T x Z G)F is a TFtorsor over (G!Z)F, 
and (T x Z G)' is the induced TFtorsor. 

Proof of 1.25. By 1.26, we are reduced to prove that XT.B, as a TF_ 

space, is induced by the TFSpace X The spaces XTTB and X are 
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indeed respectively TF and TF-torsor over XTCB = XiCi and XTCB is hence 
the TF-torsor induced by the TF torsor XTCB. 

COROLLARY 1.27. Let 8 be a character of GF/w(GF). We denote again by 
8 its restriction to TF. One has RapB = $RCB 

It follows from 1.25 that 

H*(XTC B. Q I) = I nd ( Gx ZT )F (X T c B Q I) 

The character 0(gt) of (G x Z T)F is trivial on the image of G x 2 T. The 
induced representation we consider is hence isomorphic to its tensor product 
with 0(gt), and 1.27 is a formal consequence of this. 

2. Examples in the classical groups 

2.1. Let V be an n-dimenssional vector space over k and put G= GL( V). 
If b = (b1, *. . , b,) is a basis of V, we may take for T* the group of diagonal 
matrices and for B * the group of upper triangular matrices. The Weyl 
group lifts into the subgroup of N(T*) consisting of the il's inducing a 
permutation of basis vectors. In this case, T, W (1.1), X (1.2), E, -lb (1.7), 
have the following alternative description. 

(a) T = GA, W = e5, the fundamental reflections are the transpositions 
(i, i + 1) and the action of W on T is by permutation. 

(b) X is the space of complete flags D1 c * * c D,1 in V: a flag D is an 
increasing filtration of V with dim Di = i for 1 < i < n - 1. 

(c) E is the space of complete flags marked by non-zero vectors 
ei C DiJDi-1 = Gr D(V) (1<i<n), where we use the convention Do = 0, Dn = V; 
T acts on E by (D, (ei))(X%) = (D, (Xiej)). This is a G-equivariant T-torsor 
over X. 

(d) If D' and D" are two flags, their relative position is labelled by the 
permutation w such that GrDi )GrfD"(V) / 0. The isomorphisms 

Gr(i)(V) _ Gr "Grw(V) Gri)Gri (V) Gr"(V) 

induce a w-isomorphism between the T-torsor E(D') of markings of D' and 
E(D "): e F- e Mia. When w is the n-cycle (1, n), D' and D" are in relative 
position w if and only if 

D + D'= Dr'+l (1 < i < n-1) and D 1 + D' V. 

2.2. We now take k and Fq as in (0.1.1) and assume that V is provided 
with an Fq-structure. Frobenius maps are then defined. For w = (1, * * *, n), 
the condition for a flag D to be in relative position w with its image FD by 
Frobenius is that D be the flag 
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D1 c D1 + FD1 c D1 + FD1 + F2D1 cz. and that V=e' F5D1. 

If we denote by P( V) the set of homogeneous lines in V, the map D v-+ D1 is 
an isomorphism from X(w) to the set of all x C P( V) which do not lie on any 
Fq-rational hyperplane. A marking e of F is such that F(e) = e . if and 
only if 

e2 F(el) (mod el), e3 F2(e1) (model, F(el)), *. 

en- F"-'(e,) (mod el, F(el), *,F-2(el)) 

and 

el Fn(el) (mod F(el), ***, -(el)) 

e is defined by el ? D1 subject to the condition that 

el A F(el) A ... A Fn-'(el) - Fn(el) A F(e,) A ... A F '(el), 

i.e.: 

(2.2.1) F(el A ... A F-'(e,)) = (-l)%' (el A ... A F'n-(el)) 

If (xi) are the coordinates of el with respect to some rational basis, the con- 
dition (2.2.1) can be rewritten 

(2.2.2) (-1)%'(det (xqa')1?i,6?n)q- = 1 
The form on the left is invariant under GL(n, Fq). Up to a scalar factor, it 
is the product of all non-zero Fq-rational linear forms. The map (D, e) v-* e1 
induces an isomorphism of X(wb) with the affine hypersurface (2.2.2). This 
hypersurface is stable under x Xx for X ? F *, and this is the action of 
T(w)F. 

Our work has been inspired by results of Drinfeld, who proved that the 
discrete series representations of SL(2, Fq) occur in the cohomology of the 
affine curve x - = 1 (the form xy-x = X is SL2(F)-invariant. 

Let ~9(q, r, n) be the number of Fqr-rational points of X(w), r > 1. We 
have the following 

PROPOSITION 2.3. 

,p(q, r, n) =Ilin q'q) . 

Proof. We define a partition P(V) = X0 U X, U ... U Xn, as follows: 
Xi is the set of points x e P(V) such that x, F(x), F2(x), .*. *span a linear 
subspace of dimension i of P( V). This partition is invariant under Frobenius, 
and clearly Xi has precisely 

w~.rz+ 1) ( 1 - q ) ...*( q'+) 
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Fq-rational points. It follows that 

- 1 - ~Eo'i,,-1 p(q, r, z + 1) (1 - (i - q+l) 

This shows that, for fixed n, ep(q, r, n) is a polynomial of degree (n - 1) in 
Q = qr, with coefficient polynomials in q, and leading term Q-'. Since 
)p(q, r, n) = 0 for 1 ? r < n - 1, this polynomial must be divisible by (Q-q), 
(Q - q2)% Al (Q - qn-1). It follows that 

ep(q, r, n) = (Q - q)(Q - q2) ... (Q - qnll) 

and the proposition is proved. 

2.4. Let V be a vector space as in (2.2), with a fixed non-degenerate 
symplectic form <, > defined over Fq. We must have n = 2m. The symplectic 
group Sp( V) is then a group as in (0.1.1). Let Y be the set of all complete 
isotropic flags D1 c D2 c * c Dm in V (dim Di = i) such that 

D1 # FD1cD2, D2 FD2cD3 .., Dmj - FDm-lCDmn Dm # FDm . 

Then Y can be identified with X(w), where w is a Coxeter element in the 
Weyl group W of Sp ( V); if we identify W with the group of all permutations 
a of -m, *... -2, -1, 1,2, *..., m such that q(-i) =-v(i) for all i, then 
w is the permutation 

-' -- +-i+1(2 ? m), -11 >-m, 
i-s i -1(2 <?!<i m), 11 >-m . 

On the other hand, Y (hence also X(w)) can be identified with the set of 
x e P(V) such that 

<x, F(x)> = <x, F2(X)> *. = <x, Fm-l(x)> = 0, <x, Fm(x)> # 0 . 
For example, if dim V = 4, this is just the set of all x e P(V) such that 
<x, F(x)> = 0, <x, F2(x)> # 0. Note that the equation <x, F(x)> = 0 defines 
a non-singular surface S in P(V) and that <x, F2(x)> : 0 means that we 
remove from S a union of rational curves, one for each isotropic plane in V, 
defined over Fq. One can prove that in this case (n = 4), the number of 
Fqr-rational points of X(w) is given by: 

q2r- q (1 + q)2qr + q(1- q)2(-q)r + q -(qr_ q)(qr- 3) r odd. 

3. A fixed point formula 

3.1. Let X be a scheme, separated and of finite type over k and let 
v: X - X be an automorphism of finite order of X. We decompose a as 
a = sEu where s and u are powers of a respectively of order prime to p and 
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a power of p. The main result of this chapter is the following: 

THEOREM 3.2. With the above notations (see also 0.5), 

Tr(u*, HC*(X, Q1)) = Tr(u*, HC*(Xs, QZ)) - 

The first step is to prove that the left hand side is an integer independent 
of 1. One might conjecture that for any endomorphism f of X and each i, 
Tr(f*, HC(X, Q1)) is integral and independent of 1, but such a more general 
and precise result is known only for X proper and smooth (Katz and Messing, 
Inv. Math. 23 (1974), 73-77). 

PROPOSITION 3.3. With the notations of 3.1, Tr(o*, HC*(X, Q)) is an 
integer independent of I (I # p). 

A standard specialization argument allows us to assume that p > 1 and 
that k is an algebraic closure of the prime field Fp. This is anyway the only 
case we will need in the rest of the paper. The scheme X and a can then be 
defined over some finite extension Fq c k of Fp; we denote by F: X X the 
corresponding Frobenius endomorphism. 

Let us first assume that X is quasi-projective. Then, for n ? 1, the 
composite F o oa is the Frobenius map relative to some new way of lowering 
the field of definition of X from k to Fqn and the Lefschetz fixed point formula 
for Frobenius ([5] and [11]) shows that Tr((Fnc)*, H*(X, Q1)) is the number 
of fixed points of Yna (n > 1). The automorphisms F* and v* of the 
cohomology commute; as a function of n, Tr((F"n)*, H*(X, Q1)) is hence of 
the form E aoX" where X runs through the multiplicative group Ql of Q1 
and where a, is zero for all X except for a finite number of them. 

The functions N+ Q*: n (for X e Q*) are linearly independent. 
This can be checked either by using Vandermonde determinants or by appeal- 
ing to Dedekind's theorem on the linear independence of characters (Bourbaki, 
Algebre V, ? 7, 5). For n > 1 the numbers E aolx = I X"i are rational; 
hence for any automorphism z of Q, one has 

S z((x )(X)n - E zl(a:-l~l)X\" - {a (n > 1), 

and, by the linear independence of the functions Vn, 

aU) =Z (a2) 

In particular, Tr (a*, HC*(X, Q1)) = a, is invariant by any automorphism 
of Ql, hence rational. Similarly, as Tr((Fnq)*, Hc*(X, Q1)) = XF-, I is inde- 
pendent of 1, for any isomorphism r: Q, -+ Q11 one has 

rTr(or*, Hc*(XI Q1)) = Tr(a *, H*(X, Ql )) 
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hence the rational number Tr (*, HC*(X, Q,)) is independent of 1. 
Since the automorphism a has finite order, Tr (o*, HC*(X, Q,)) is a sum 

of roots of unity, hence an algebraic integer. Being rational it is an ordinary 
integer. 

If we do not assume X to be quasi-projective, we can either repeat the 
previous argument by working with algebraic spaces or reduce to the quasi- 
projective case: if (Xi) is a finite partition of X into locally closed quasi-pro- 
jective subschemes stable under a, then (cf. [5]) 

(3.3.1) Tr(oy*, H,*(X, Q1)) = ,Tr(a*, HC*(Xi, Q1)) . 

3.4. Proof of 3.2. Let (Xi) be a partition of X into locally closed sub- 
schemes stable under a and such that, on each Xi, a defines a free action of 
a cyclic group. By applying (3.3.1) to the decompositions X= U Xi and 
X8 = U X2, one reduces to the case where a generates a free action of a 
cyclic group H. In this case, either 

(a) a is of order a power of p, hence s = Id, u = a and (3.2) is trivial, or 
(b) the order of a is divisible by a prime number 1' # p and we must 

prove that Tr(a*, H,*(X, Q1)) 0 O. As 

Tr(a*, H,*(X, Q1)) = Tr(a*, HC*(X, Ql,)) (3.3) 
we may as well assume that 1 = 1'. Let us now grant the 

PROPOSITION 3.5. Let H be a finite group acting freely on X. Then 
Z(h) == Tr(h*, H,*(X, Q1)) is the character of a virtual projective Z4[HJ- 
module. 

If H is abelian, and if H' is its largest subgroup of order prime to 1, a 
representation of H over Z1 gives rise to a projective Z1[HJ-module if and 
only if it is induced from a representation of H'. Its character vanishes then 
on H - H' and we get the vanishing (b) by applying (3.5) to the cyclic group 
generated by a. 

3.6. Let A be a torsion ring with unit and let iF be a sheaf of left A- 
modules on a scheme Y, with Y separated and of finite type over k. The A- 
modules H(f Y, T) are then the cohomology modules of a finer object RF,( Y, T) 
in the derived category Db(A) of the category of A-modules. The following 
is the key to the proof of 3.5. 

PROPOSITION 3.7. Assume A to be right and left noetherian. If T is a 
constructible sheaf of projective A-modules, then RIF(Y, T) can be repres- 
ented by a finite complex of projective A-modules of finite type. 

We repeat the proof in [10, XVII (5.2.10)]. 
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(a) The H,(Y, T) are A-modules of finite type, and vanish for i > 
2 dim (Y) ([10, XVII (5.2.8.1) and (5.3.6)1). 

(b) For any right A-module of finite type N, one has 

RFC(JYI N A ) - NXA RC(Y TY) 

([10, XVII (5.2.9)1); the proof rests on replacing N by a free resolution of N, 
to reduce to the trivial case where N is free of finite type; we are allowed to 
use such left infinite resolutions because RFC is of finite cohomological dimen- 
sion. The assumption that N is of finite type is in fact unnecessary. 

(c) By (a) we can represent R]Fc(Y, f) by a complex of A-modules K-, 
with K' = 0 for i C [0, 2 dim Y] and K' free of finite type for i > 0. For any 
right A-module of finite type N and any i > 0, 

Tor' (N, K0) = H-i(N ?L RFc( Y, T)) (b) H-iRFc( Y, NO f) = 0 

The A-module K0 is hence flat; it is of finite type because H0(K-) is, hence it 
is projective. 

3.8. Proof of 3.5. We will assume that X is quasi-projective (the 
general case can be handled as in 3.3). Put Y - X/H and denote by w the 
projection r: X )Y. The group H acts on wrZ/l1 and this action turns wrZ/1" 
into a locally constant sheaf of free Z/l"[HJ-modules of rank one. By 3.7, 
RJ'c(Y, Y, Z/1") can be represented by a complex Kn of projective Z/l[H]- 
modules of finite type. One has RFc(Y wZ/l) 7RC(Y, rZ/I+1)L lZ/ 
(3.7 (b)), and one checks easily ([11, XV, 3.3, Lemme 11) that once Kn is chosen, 
one can choose K?+, such that Kn is the reduction mod 1 of K,+, Taking a 
projective limit, we get a complex Koo of projective Z,[HJ-modules and an 
H-equivariant isomorphism 

Hc*(X, Z1) = lim HC*(X, Z/l) = lim HC*(Y, w*Z/1I) = H*(Koo) 

(the middle equality because 7c is finite). We then have 

X(h) = Z; (- 1)i Tr (h, Kz ) . 
3.9. Let X/k be as in (3.1), T a finite abelian group of order prime to 

p, G a finite group and p an action of T x G on X. We assume that the 
action of T on X is free. We let T x G act on H*(X) by transport of struc- 
ture. For any character 8 of T with values in Q1, we denote by H,*, the 
subspace of H*(X) on which T acts by 0; on Ho*, t* is the multiplication by 
0(t)'. 

Let us assume for simplicity that X is quasi-projective. We denote by 
;r the projection ir: X-) Y = X/T. The group G acts on Y. For each g e G, 
we denote by I(g) the set of connected components of the fixed point set Y9 
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and by Y17 the component corresponding to i e I(g). 
For y e Y, r'-(y) is a principal homogeneous set for the action of the 

abelian group T. If y e Y9, g acts on w-'(y) and commutes with T, it hence 
acts like some t(g, y) e T: 

gx = t(g, x)x, x G r-'(y); 

t(g, y) is constant for y in each connected component Yj9 of Yg; we denote it 
by t(g, ). 

The Theorem 3.2 will be used in the following form. 

COROLLARY 3.10. With the above notations, let g = su be the decomposi- 
tion of g e G as the product of commuting elements respectively of order 
prime to p and a power of p. Then, 

Tr (g*, Ho*) = e I (s) 8(t(s, i)-1) Tr (u*, H,*( Yis)) 

For t c T, the decomposition 3.1 of a = tg is tg = (st)u. We have 

X)st =Je(S) 
w' 1( yi)st = JJi I(s) w'( Y) 

t= t (s i ) 

hence 

Tr(g*, Ho*) = T t (t)-Tr(g*t*-1, H,*(X)) 

- 1 
Et 0(t) Tr (g*t*, H*(X)) TI 

= 
1 0 (t) {ieI(s) Tr(u*, 

1 
*(-l(Yis))) 

TI Tlt-t(S'f -1 

- 1 
e 0(t(s, i)-1)Tr(u*, HJI*(w-1(ys))) 

The decomposition (3.1) of the automorphism tu of r-'(Yis) is t u. For t + e, 
t has no fixed point, hence 

Tr((tu)*, H1*('-1(Y:s))) = 0 (t # e). 

The endomorphism 

1 
E t* of HC*(i-'(Yis)) 

is a retraction onto the subspace w*H,*(Yjs), hence 

I Tr(u*, H,*(i-r'(Yjs))) = Tr(u*, Hc*(Yjs)) TIT 
and, substituting into the expression for Tr(g*, H*), we get (3.10). 

3.11. The end of this chapter will not be used in this paper. Let G be 
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a finite group acting on X/k as in (3.1). For simplicity we assume X to be 
quasi-projective. Assume further that G acts freely on X, and put Y = X/G. 
The covering X of Y is said to be tame if Y can be imbedded as a Zariski 
open dense subset of a proper scheme Y in such a way that the p-Sylow-sub- 
groups of G act freely on the normalisation X of Y in X: 

X .1X 

1 1 

Ye ,Y. 
PROPOSITION 3.12. With the above notations, if XI Y is tame, then the 

virtual representation (-1)tH,(X) of G is a multiple of the regular 
representation. 

It suffices to prove that Tr(g*, H*(X)) = 0 for g # e. If g is not of 
order a power of p, this follows from (3.2). If g is of order a power of p, g 
acts without fixed points on X and 

Tr(g*, H*(X)) = Tr(g*, H*(X, ji Q1)) = 0 

by the Lefschetz fixed point theorem applied to X and the sheaf j Q1. 
3.13. Historical remark. The method we have followed, using (3.5), 

was first used by Zarelua (On finite groups of transformations, Proc. Int. 
Symp. on Topology and its Applications, 1968, pp. 334-339) and independently 
by J. L. Verdier to prove that if a finite group G acts freely on a topological 
space X of finite cohomological dimension, and if the H$(X, Z) are of finite 
type, then E (-1)tH'(X, Z) 0 Q is a multiple of the regular representation 
of G. 

4. The character formula 

The assumptions (0.1.1) are in force in this chapter and the next four. 

DEFINITION 4.1. Let T be an F-stable maximatl torus of G. The Green 
function QT, (u) is the restriction to the unipotent elements of the character 
of the virtual representation RTCB, where B is any Borel subgroup contain- 
ing T. 

This Green function does not depend on B (by (1.6) and (1.17 (i))); it only 
depends on the GF-conjugacy classes of T and u. The natural map x -~ Y 
from G to its adjoint group induces a bijection on the unipotent sets, and 

(4.1.1) QTau () = QTGad(U) r 

The Green function is integer-valued (3.3) and is a restriction of a character 
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of G', hence QTG(U) = QTG(u) if (n, p) = 1. 
Let a be the smallest integer ? 1 such that Fa' is the identity on W. 

From the proof of (3.3) we see that XT> 
' XJ'ut" is a rational function of t 

and that 

(4- 1-2) QTAU() XTrize XTB t to 

In this chapter, we will express the character of RTCB in terms of 0 and 
of Green functions. 

THEOREM 4.2. Let x = su be the Jordan decomposition of x e GF. Then 

Tr (x, RTfB) Z, 1) P QadgT,Z~'W(u) ad g (0)(s) | 
ZO(s)F 

| 
adgTczocs) 

Let ex be the function on GF whose value is 1 at x C GF and 0 elsewhere. 
One can rewrite 4.2 as giving the following formula for the character of 
RTCB 

(4.2.1) Tr( , R.TcB) = tgeTF I Z0}(t); 8(t) EueZO(t)F QTZ0(t)(U)4adg(tu) 
geG 

where we put QT,ZO(tu(U) =0 whenever u is not unipotent. 

COROLLARY 4.3. R9TzB is independent of the choice of B (B D T). 

From now on we shall write Rf for R2CB. We will deduce 4.2 from 3.7 
and the following geometrical facts. 

PROPOSITION 4.4. (i) If a Borel subgroup B1 of G contains s, then 
B1 0 Zo(s) is a Borel subgroup of Z0(s). 

(ii) Pick Tc B in G. Any Borel subgroup B1 such that s C B1 is of the form 
ad gB with ad g T c ZZ(s) (i.e., g-'sg c T). The left coset TT, B(Bl) (-) Z 0(s) * g 

(def.) 
depends only on T, B, and B1. 

(iii) The map Bf' Bf n zo(s) is an isomorphism from the space of 
Borel subgroups containing s, such that T, B(B') =TT, B(Bl) and the space of 
Borel subgroups of Z0(s). 

Proof. (i) is well known. Put B, = adg1B. We have gy'sg1 C B hence 
there exists u in the unipotent radical of B such that u-'g7'sg1u E T. We 
take g = g1u. Put T' = adgT. If g'= hg is also such that adg'B = B1 
(resp. ad g'Tcz ZO(s)) then h e B, (resp. h e Z0(s)N(T'), by the conjugacy of 
maximal tori in ZO(s)). If W= N(T')/T' is the Weyl group of G and 
W? = (N( T') n Z0(s))/ T' that of Z0(s), the Bruhat decomposition for Z0(s) 
reads 

ZO(s) = (B1 n Z(s)) W?(B1 n zo(s)), 
and 
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(B1Z?(s)) n N( T') = B, W(B1 n Z?(s)) n N( T') cB1 W?B1 ln N( T') W?( T') ci Z?(s) 
Hence 

B1 n (Z0(s) N(T')) ci Z?(s) 

and 

B1 n (Zo(s).N(T')) =B1 fn z(s). 
The element g such that ad gB = B, and ad g T ci Z?(s) is unique modulo 
B1 n Z0(s), hence (ii) and (iii). 

A Z?(s)-left coset z = Z?(s)g, with ad g T ci Z?(s), defines an isomorphism 
7 from the maximal torus of G to that of Z?(s); ad g maps T (contained in 
the Borel subgroup B) to ad g T ci Z?(s) (contained in the Borel subgroup 
ad gB n ZO(s)). This construction will allow us to compare the relative posi- 
tion of Borel subgroups in G and Z?(s). 

PROPOSITION 4.5. Let B,' and B1" be Borel subgroups containing s, 

ZT, B(BI) I " 
= ZT, B(B1) ; 

let w be the relative position of B' and B" (in G) and w, that of Bf n z0(s) 
and B" n Z0(s) (in Z?(s)). Then 

Replacing (T, B) by a conjugate, we may assume that B= B1' and that 
T ci B' n zo(s) n B{. We will identify the maximal torus of G and that of 
Z?(s) with T, using Tci B and Tci (B n zo(s)). We then have T' = Id. Re- 
placing B'" by a N(T) n Z?(s)-conjugate, we may further assume that 
w, = 1, i.e., B, nZ Z(s) = B." n zo(s). We must prove that w = i", which 
is clear. 

LEMMA 4.6. If B and B', containing T, are in the same relative posi- 
tion as B1 and B' containing s, then TTB(Bl) =T, B'(B) 

Replacing (B, T, B') by a conjugate, we may again assume that B = B 
and that TciB1 n zo(s) n B'. In this case B' = B/'. 

To prove (4.2) we first compute the space XTCB of Borel subgroups B1 
containing s and such that B1 and FB1 are in the same relative position as B 
and FB. 

PROPOSITION 4.7. Let XTB(g) be the subspace of XTCB consisting of those 
B1 with zT,B(Bl) = Z?(s)g. Then 

(4.7.1) XTCB J~g e ZO(8)F\GF X0CB(g) 
adgTcZ0(s) 

and, for g ? GF, the map B1 B1 n Z?(s) induces an isomorphism 
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(4.7.2) XTCB(g) > XadgTcadgBlzO(s) 

By 4.6, we have FzT, B(Bl) Z=T, FB(FB,) = zT, B(Bl). By Lang's Theorem, 
the Z0(s)-principal homogeneous space z-T,B(Bl), being F-stable, has a rational 
point, hence (4.7.1). By (4.4 (iii)) and (4.5), the map (4.7.2) is an isomorphism 
from XTKB(g) to some X(w) (relative to ZO(s)); to check which w appears, we 
observe that ad gB ? XTB(g). 

Proof of 4.2. The theorem is now an immediate application of (4.7) and 
(3.10) applied to the action (1.17) of GF x TF on XTGB. 

5. Characters of tori 

We will assume chosen isomorphisms 

(5.0.1) k* > (Q/Z), I 

and 

(5.0.2) (roots of unity of order prime to p in Q ) > (Q/Z)P, . 

5.1. Let T be a torus over k. Besides the character group X(T) = 
Hom (T, Gm), we will consider its dual Y(T) = Hom (Gm, T). The duality is 
given by 

<x, h> = a ? h ? Hom (G,,, Gm) = Z 

(x ? X(T) and h ? Y(T)). The maps (h, x) 1 h(x) and t t (x >-~ x(t)) induce 
isomorphisms 

(5.1.1) Y(T) (? k* = T(k) = Hom (X(T), k*) 

If T is a maximal torus in G, the roots of T in G are elements of X(T), 
while the coroots belong to Y(T). If ax is a root, the corresponding coroot Ha 
is characterised as follows: there is a homomorphism u: SL(2)-)G, which maps 
the subgroup (1 1) onto the root subgroup Ua, and whose restriction to the 
group of diagonal matrices (identified with Gm by x (Ox x-)) is Hs 

5.2. Using the chosen isomorphism (5.0.1), we can rewrite (5.1.1) 
as 

(5.2.1) T(k) = Y(T) 0 (Q/Z)PT = (Y(T) ?& Q/Y(T))pt- 
If T is obtained by extension of scalars from a torus To/Fq, the Frobenius 

map F induces a map F: Y( T) -- Y( T) (Y is a covariant functor) and TF is 
the subgroup Ker (F - 1) of T(k) = Y(T) (0 (Q/Z)pt; since F is divisible by 
p, it is also the kernel of F - 1 in Y(T) (0 Q/Z: 
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(5.2.2) 0 T Y(T) &Q/Z Y(T) Q/Z >0. 

By applying the Snake Lemma to 

0 ) Y(T) ) Y(T) &S Q ) Y(T) &S Q/Z > 0 

{F-1 IF-1 IF-1 
0 ) Y(T) ) Y(T) & Q ) Y(T) & Q/Z > 0 

we get another exact sequence 

(5.2.3) 0 FY(T)- Y(T) T >0. 

The maps in (5.2.2), (5.2.3) depend on the choice (5.0.1). An intrinsic 
expression for these sequences would be as follows: 

TF is the image of the middle map in the exact sequence 

F-i (F -i)-' 0 -, Y(T) p(1) Y( T) '(1 (1) Y(T)^ (1) 0 Q/Z 
F-i ) Y( T)'p,'(1)() Q/Z 0 . 

Let us map the sequences (5.2.2), (5.2.3) into Q/Z. The isomorphism 
(5.0.2) provides an isomorphism 

(T F)' ( Hom (TF, Q*) Hom (T F, Q/Z), (def) 

and we get exact sequences 

F-i (5.2.2)* 0 X(T) X(T) (T > 0 

(5.2.3)* 0 (T -* X(T) ? Q/Z - X(T) 0 Q/Z - 0. 

The dual torus T* of T is defined by the rule X(T*) - Y(T), (hence 
Y(T*) = X(T)); its Fq-structure is defined by (F on Y(T*)) _ (tF on X(T)). 
Via some isomorphism 

(5.2.4) (TF)" T*F 

the sequences (5.2.3), (5.2.2) for T* are identical with (5.2.2)*, (5.2.3)*. 

5.3. If we go from Fq to Fqn, F is replaced by Fn. Composition with 
the norm map 

F-i~~~~~F ian N: T F -1 W hv c dia 

is an injection 'N-: (T F)' (T F1)1. We have commutative diagrams 
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F n - 1 Fn - 1 

{ N {N {N= Yn-1 Fi 

0 -Y y Y- ,---- TF , YO Q/Z O Y Q/Z , 0, 

0 > X X X )( T F) > X&(3Q/Z > XO@Q/Z > O 

jtN-=ln-4Fi jtN { 
0 X )X >~ X ( T F), A X 

Q/Z > X&(3Q/Z > O. 

where X and Y stand for X(T) and Y(T). In particular, for 0 a character 
of TF, 0 and O o N have the same image in X(T) ? Q/Z, and (5.2.4) gives rise 
to a commutative diagram 

(T F) (T*)F 

_N 17 
( Fn) (*)Fn 

PROPOSITION 5.4. Let T and T' be two F-stable maximal tori of G, and 
let 0, 0' be characters of TF, T F. We identify them with characters of Y(T) 
and Y(T'), by (5.2.3). The following conditions are equivalent: 

(i) For somex e G, withad x(T) = T', the map induced byadx: Y(T)-Y(T') 
carries 0 to 0'; 

(ii) For some n, the pairs (T, 0 o N), (T', 0' o N), where N is the norm 
from T Fn to TF (resp. T In to TIF) are G~Fnlconjugate. 

By 5.3, the condition (i) is invariant under the replacement of F by Fn 
and of 0, 0' by 0o N, 0'o N. It hence suffices to check (5.4) in the trivial case 
where T and T' are split. 

DEFINITION 5.5. The pairs (T, 0), (T', 0') are said to be geometrically 
conjugate when the equivalent conditions of (5.4) hold. 

5.6. Let (T, 0) be as above. The choice of a Borel subgroup B contain- 
ing T defines an isomorphism of T with the torus T; the corresponding 
isomorphism Y(T) Y(T) carries 0 to a character of Y(T) with values in 
the roots of unity of order prime to p in Ql. The isomorphism (5.0.2) identifies 
it with an element of X(T) ? (Q/Z)p,. Its class [0] in (X(T) ? (Q/Z)p,)IW is 
independent of the choice of B. It is invariant under F. Let us put 

[(X( T) (D) (Q/Z) p )|]) [(X( T) (9)QZ |] 

PROPOSITION 5.7. (i) The map 0 H- [0] induces a bijection from the set 
of geometric conjugacy classes of pairs (T, 0) to 3. 
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(ii) (Compare Steinberg [15, p. 93]). The number of geometric conjugacy 
classes of pairs (T, 0) is ( ZOF f q' where Z0 is the identity component of the 
centre of G and I is the semisim ple rank of G. 

(i) The infectivity is clear on 5.4(i). Let us prove surjectivity. If the 
class mod W of x C X(T) (0 (Q/Z)p, is invariant by F, one indeed has t(wF)x = x 
for some w E W, and x corresponds to a character of T(W)F, hence of TF, for 
some F-stable maximal torus T in G (1.14). 

(ii) As in (5.2), we may now identify geometric conjugacy classes of 
pairs (T, 0) with Fq-rational points of the quotient T*/W. Our task is to 
compute 

I (T*/W)F I E (-1)iTr(F*, H,(T*/W)) = E(-1)iTr(F*, Hc(T*)w) 

Let G' be the derived group of G; the torus T* is isogenous to (hence has the 
same cohomology as) the product of ZO* with T'* (T' being the torus of G'). 
Since any torus has as many rational points as its dual, we get by Kiinneth's 
Theorem 

I (T*/W)F l Z IF (_1)iTr(F*, H,(T'*)w) 

We have 

H*(T'*, Qj) A* Hl(T'*, Qj) = A* (Y(T') ? Qj(-1)) 
hence by Poincare duality, 

Hl-i(T'*, Q1) - Hom (A' Y(T'), Q,(i - 1)) 

and 

Tr(F*, H2li(T'*)w) ql-'Tr(F, A Y(T')w) 

The next lemma shows that this trace is zero for i = 0, hence the qt factor. 

LEMMA 5.8. Let W ci Aut (V) be a finite group generated by reflections 
of a real vector space V of dimension d. We assume that V' = 0. Then 
(AiV)w = Ofor i # 0. 

For a proof, see Bourbaki [1, Ch. V, Ex. 3 of ? 2]. 

5.9. Let T be an F-stable maximal torus in G and let a be a root of T. 
For 0 a character of TF, we will say that 0 is orthogonal to Ha: <H,, 0> = 0 
if 0, viewed as a character of Y(T) (5.2.3), is identically 1 on Hor. The char- 
acter 0 of Y(T) is then invariant by the corresponding reflection sa. 

5.10. Let 7w: GO G be the simply connected covering of the derived 
group of G, and let T be the inverse image of T in G. The group T is con- 
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nected: it is a maximal torus in G. It acts on T x G by T*(t, g) = (tw(t)', tg), 
and the map (t, g) F-tg induces an isomorphism T\T x G-> G, hence (Lang's 
Theorem) TE \TFx GF > GF. We have 

(5.10.1) TF/w(TF) G GF/WF(G). 

PROPOSITION 5.11. (i) A character of TF is the restriction to TF of a 
character of GF/wz(GF) if and only if it is orthogonal to all coroots. 

(ii) Let 0 be a character of GF/w(GF), T and T' two F-stable maximal 
tori and let x E G be such that adx (T) = T'. Then adx: Y(T)-+ Y(T') carries 
the restriction of 0 to TF (viewed as a character of Y(T)) onto the restriction 
of 0 to TIF: the restrictions of 0 to the F-stable maximal tori are all geomet- 
rically conjugate. 

The assertion (i) follows from (5.10.1), and the fact that Y(T) c Y(T) is 
spanned by the coroots Ha. To prove (ii), we will use the criterion 5.4 (ii). 
Let n be such that x e GFn. We will prove that if y e TFn, N(y) and N(adx(y)) 
have the same image in GF/w(GF), hence that adx transforms (6 I TF) o N into 

(d I TIF) o N. 
The map t F N(t)-1N(adx(t)): TV G lifts uniquely into a map q': TV G 

mapping e to e. Indeed, 
(a) it factors through T/Z; 
(b) the map t - N(t)-1N(ad x(t)): T_ G factors through T/Z T/Z and 

the desired lifting is the composite TV T/Z= T/Z- G. 
Similarly, the map 

(a, it)-- 0 a-1N(t)-1N(ad x(t)) ad x(a): T x To- G 

lifts into A: T x T- G, with *(e, t) = (t). The identity 

F(N(t)-1N(ad x(t)))= N(Ft)-1N(Fadx(t)) 
= (t-lFnt)-1N(t)-1N(ad x(t)) ad x(t-)F ad x(t) 

= (tlF-t)1N(t)1N(adx(t))adx(t1F t) 

lifts into 

Fq'(t)= - (t-1Fft ?(t)) 

Putting t = y, we have y-1Fnzy = e, hence Fp(y) =p(y) and p(y) e GF. We 
have N(y)-1N(adx(y)) e wcp(GF), as required. 

Remark 5.12. The argument above can be used to show the existence of 
a norm map N: GFn/w(GFn) GF/w(GF) which for each F-stable maximal 
torus T gives rise to a commutative diagram 
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TFn/w(TFn) , G/ Fn) 

1N AN 
T F/w(T F) > G F/(GF) 

THEOREM 5.13. Let (T, 6) be as above. We use (5.2.3) to identify 6 with 
a character of Y(T). If the centre of G is connected, then the stabilizer of 6 
in the Weyl group W = N(T)/ T is generated by the reflections sag, for Ho a 
coroot orthogonal to 6. 

The key point in the proof is the same as in Steinberg's Theorem that if 
the derived group G' is simply connected, then the centralizer of any semi- 
simple element is connected. 

Let us identify 6 with the corresponding element in X(T) 0 (Q/Z)X, 
(invariant under F). Let 01 e X(T) ? Q be a representative for it. This 01 
has no p in the denominator. We have the dictionary: 

(a) <Ha, 0>=O <Ha, 01>eZ; 
(b) 6 is fixed by w e We for some x e X(T), w61 + x = 01. 
Let Xad be the subgroup of X generated by the roots. It is the character 

group of the image Tad of T in the adjoint group. The character group of 
the centre Z = Ker (TV Tad) of G is X/Xad; the character group of Z/Zed is 

the torsion subgroup of X/Xad, hence 
(c) Z is connected and smooth (resp. connected) if and only if X/Xad is 

torsion free (resp. has no torsion prime to p). 
For each root a, s51) = 01 - <Ha,, 01>a. The number <Ha,, 01> has no p 

in the denominator; hence <Ha,, 01>x e X(T) if and only if <Ha,, 01> e Z; sa(6) = 6 
if and only if <Ha,, 6> = 0. It remains to check that the stabilizer of 6 is 
generated by the reflections it contains. 

Fix N such that (1/pN)Xad D X n (Xad A) Q) and such that pN _ 1 (mod 
the order of 6). For any w e W, w6l - 01 is in Xad 0) Q, hence if w6l - 06 is 
in X, W(pNil) - (pNo6) e Xad. Replacing 01 by pN61, which is also a representa- 
tive of 6, we may assume that 6 is fixed by w e W if and only if w6l + x = 0, 
for some x e Xal. The stabilizer of 6 in W is the image in Wof the stabilizer 
of 01 in the affine Weyl group. It remains to apply Bourbaki [1, Ch. VI, Ex. 
lof ?2]. 

Remark 5.14. The proof shows that, if we use a suitable Borel subgroup 
B D T to identify W with W, the stabilizer of 6 becomes the subgroup of W 
generated by some of the reflections corresponding either to a simple root or 
to the negative of the highest coroot. 

DEFINITION 5.15. (i) The character 6 of TF is nonsingular if it is not 
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orthogonal to any coroot. 
(ii) 6 is in general position if it is not kept fixed by any non-trivial 

element of (N(T)/T)F. 

PROPOSITION 5.16. If the centre of G is connected, a character is non- 
singular if and only if it is in general position. 

The stabilizer of 6 in N(T)/T is a group generated by reflections, and is 
stable by Frobenius. We have to prove that the subgroup fixed by Frobenius 
is non-trivial. This follows from the next lemma. 

LEMMA 5.17. Let V a {O} be a euclidian vector space, and let W be a 
finite group generated by orthogonal reflections. We assume that VW {O}. 
If a belongs to the normalizer A of W in O( V), the centralizer Wa of a in 
W is non-trivial. 

(a) Reduction to the irreducible case. Let V = Vi be the decomposi- 
tion of V as a direct sum of irreducible root systems; we have W = I Wi. 
The automorphism a permutes the Vi; by taking a direct factor, we may 
assume that it permutes them cyclically: V= - ez Vi and a Vi = Vj?j. An 
element w = (wi) e W = II Wi is in Wa if and only if wi = ad a'(wo) and w( 
is fixed by an; we are reduced to proving that WJan is non-trivial. 

(b) In the irreducible case, one always has either A = W U - W or 
-1 e W; both cases are clear. 

COROLLARY 5.18. For any G, if 6 is in general position, then 6 is non- 
singular. 

Let us embed G in a group G, with connected centre and the same derived 
group. For instance, one can take G1 = G x T/{(z, z'1) I z e Z(G)}. The torus 
T is then contained in an F-stable maximal torus T1 of G1, and 6 is the 
restriction to TF of some character 01 of T1'. If 6 is in general position, 01 is 
so a fortiori, hence non-singular (5.16). A character 01 of T1F is non-singular 
if and only if its restriction to TF is, hence (5.18). 

When all roots of G have the same length, geometric conjugacy can be 
given the following convenient description. 

DEFINITION 5.19. (Assuming all roots to be of the same length) Let T be 
an F-stable maximal torus and let 6 be a character of TF. The connected 
centralizer S(T, 6) of (T, 6) in G is the F-stable reductive subgroup of G with 
maximal torus T and with root subgroups relative to T the Ua, for which 
<Ho, 0> = O. 

If <Haf, 6> = <Hf, 6> = 0 and a + fi is a root, then H+? = Hog + Hp, 
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hence <Ha?+, 6> = 0 and the definition makes sense. Let 7r: S(T, 6) S(T, 6) 
be the simply connected covering of the derived subgroup of S(T, 6). By 
5.11 (i), 6 extends to a character 6s of S(T, 0)F/w(S(T, 6)F). 

PROPOSITION 5.20. If the centre of G is connected and all roots are of 
the same length, then a pair (T', 6') is geometrically conjugate to (T, 6) if 
and only if (S(T, 6), 6S) and (S(T', 6'), 6%) are GF-conjugate. 

The "if" part follows from 5.11. Conversely, let (T', 6') be geometrically 
conjugate to (T, 6): for some x e G, ad x(T) = T' and ad x: Y(T) -Y(T') maps 
6 to 6' (via (5.2.3)). If F': T' - T' is the Frobenius map of T', adx-'(F')= 
ad wF for some w in the Weyl group of T. We have tF0 = 0, and t(ad wF)6 = 0, 
hence 6 is fixed by w, which by part (i) belongs to the Weyl group of T in 
S(T, 6). Let T" = ad y(T), y e S(T, 6) be an F-stable torus in S(T, 6), with 
Frobenius F", such that (ad y)-'(F") = (ad x)-'(F'). Replacing (T, 6) by 
(T", ady(6)) (by applying 5.11) and replacing x by xy-1, we are reduced to 
the case where adxF = F'adx. In this case, (T, 6) and (T', 6') are GF-con- 
jugate; the identity adx(Ft) = Fad x(t) for t e T amounts to x-'Fx e T; and 
replacing x by xt-1 with t e T, t-'Ft = x-'Fx, makes x rational. 

When roots are not all of the same length, one has to work in the dual 
group G* of G. 

DEFINITION 5.21. A group G* dual to G is a reductive group G* defined 
over Fq, whose maximal torus T* is provided with an isomorphism with 
the dual of the maximal torus T of G, this isomorphism carrying simple 
roots to simple coroots. 

Here are some properties of this duality. Let G and G* be dual. 
(5.21.1) G and G* have the same Weyl group W. The action of W on 

Y(T*) is the contragredient of its action on Y(T). 
(5.21.2) However, Frobenius does not act in the same way on W in G 

and G*: it acts in inverse ways (the origin of this is that F on Y(T *) is the 
transpose of F on Y(T)). 

(5.21.3) The conjugacy classes of pairs (T, B) (T an F-stable maximal 
torus, B a Borel subgroup containing it) in G and G* correspond. With the 
notations of (1.13), (1.14), to the class of (T, B) we associate the class of 
(T*, B *) with t(ad h(T. B)-Y o F) = adh(T*, B*)-1 otF; the tori T and T* are 
in duality. 

(5.21.4) This induces a bijection between the rational conjugacy classes 
of maximal tori in G and G*. If T and T' are in corresponding classes, we 
have a natural class (mod (N(T)/ T)F) of isomorphisms between T* and T'. 
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(5.21.5) Let T be an F-stable torus on G, and let 6 be a character of TF. 

Fix T', a corresponding torus in G*. The character 6 defines an element of 
T*F, then a (N(T')/T')F-conjugacy class of elements 6' of T'. In that way, 
we get a bijection between GF-conjugacy classes of pairs (T, 6) as above, and 
G*F-conjugacy classes of pairs (T', 6'), T' an F-stable maximal torus of G* 
and 6' an element of TIF. This correspondence is compatible with extension 
of scalars from Fq to Fqn (cf. 5.3.). 

(5.21.6) By forgetting T', we see that each GF-conjugacy class of pairs 
(T, 6) defines an element 6' e G*F, well-defined up to G*F conjugacy. 

PROPOSITION 5.22. Two pairs (T1, 06) and (T2, 02) are geometrically con- 
jugate if and only if O' and O' are geometrically conjugate. 

An extension of scalars (cf. 5.4, 5.5) reduces us to the case where T1 and 
T2 are split. Conjugating, we may assume further that T1 = T2. In this case, 
geometric conjugacy is W-conjugacy, and the proposition is clear. 

PROPOSITION 5.23. Let G and G* be dual. Then, the centre of G is con- 
nected and smooth (resp. connected) if and only if the derived group of G * 
is simply connected (resp. if its simply connected covering is unseparable). 

Put Y= Y(T*), T* the maximal torus of G*; let Y, be the subgroup 
generated by the coroots; and put Y2 = Y nl If Q. Then, Y2 is the Y-group 
of the maximal torus of the derived group, and Y1 that of the maximal torus 
of its universal covering. The group of this covering is the dual of the 
Pontrjagin dual of Y2/ Y1, and (5.23) follows by comparison with point (c) in 
the proof of (5.13). 

COROLLARY 5.24. If the centre of G is connected, two pairs (T1, 06), (T2, 02) 
as in (5.22) are geometrically conjugate if and only if 06 and 06 are G*F-con- 
jugate. 

Indeed, by a theorem of Steinberg, geometric conjugacy amounts in this 
case (5.23) to conjugacy, for semi-simple elements of G* (their centralizers 
are connected). 

DEFINITION 5.25. Let (T, 6') correspond to (T, 6) as in (5.21.5). The 
pair (T, 6) is maximally split if the Fq-rank of T is equal to that of the 
centralizer of 6', i.e., if T' is maximally split in that centralizer. 

Any geometric conjugacy class of pairs (T, 6) contains maximally split 
pairs. 

PROPOSITION 5.26. If the centre of G is connected, two geometrically 
conjugate maximally split pairs (T1, 06), (T2, 02) are GF-conjugate. 
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Via (5.21.5) and (5.24), this amounts to the known fact that two maxi- 
mally split maximal tori in the centralizer Z(6') of a semi-simple element 6' 
of G *F are conjugate by an element of Z(6)F. 

PROPOSITION 5.27. If (T, 6) is maximally split, and the image of T in 
the adjoint group is anisotropic, then 6 is non-singular. 

Fix (T', 6') as in (5.21.5). By assumption, Z0(6') contains no non-central 
F-stable split torus, hence Z0(6') = T'. The roots of T' in Z0(6') correspond 
to the coroots of T orthogonal to 0, hence the proposition. 

COROLLARY 5.28. If (T, 6) is maximally split, T is containd in an F- 
stable Levi subgroup L of an F-stable parabolic subgroup P, and, in L, 
(T, 6) is non-singular. 

One chooses P and L so that the image of T in the adjoint group of L is 
anisotropic. Being maximally split in G, (T, 6) is a fortiori maximally split 
in L, and one applies (5.27). 

The following result will be used in the next chapter. 

PROPOSITION 5.29. Let T' be a subtorus of a torus T, with T defined 
over Fq (no assumption on T'). Let 6 be a character of TF. It is trivial on 
T' f TF if and only if, when viewed as a character of Y(T), it is trivial on 
((F - 1)Y(T') ? Q n Y(T)). 

The condition is that (x) = 0 for 

(F -l)-'(x) e (Y(T') ? Q + Y(T)) 

i.e., for 

x e ((F- 1) Y(T')? Q nY( T)) + ((F- 1) Y( T)) 

The character 6 being trivial on (F - 1) Y(T), this means 6(x) is trivial for 
x e ((F- 1) Y(T') X Qn Y(T)). 

6. Intertwining numbers 

6.1. Let T, T' be two F-stable maximal tori in G and let 0, 6' be char- 
acters of TF and T' . We put NG(T, T') = {g e G I Tg = gT'} and 

WG(T, T') = T\NG(T, T') = NG(T, T')/T' . 

We will drop the index G if there is no ambiguity. F acts on W(T, T'), and 

W(T, T ')F = TF\N(T, T ')F = N( T, T )F /TI 

THEOREM 6.2. If 6-1 is not geometrically conjugate to 6', then 

[Hc (XTCB)O (? Hc*(T'CB')o',GF = 0 1 
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i.e., if an irreducible representation of GF occurs in HC*(XTkB)o, its dual 
does not occur in HC*(X'T'B') 0' 

The virtual representation R171 is the dual of R (as can be seen on the 
character formula 4.2), hence we have as a corollary: 

COROLLARY 6.3. If 0 and 0' are not geometrically conjugate, no irreduc- 
ible representation of GF can occur in both virtual representations R' and 

T'. 

The proof of 6.2 will make use of the following homotopy argument: 

PROPOSITION 6.4. Let H be a connected algebraic group acting on a 
scheme Y, separated and of finite type over k. For any h e H, the action of 
h on H,*(Y, Z/n) is trivial. 

Let wu be the projection of H x Y onto H and let f: H x Y H x Y be 
defined by f(h, y) = (h, hy): 

Hx Y f Hx Y 

H 

By the change-of-basis theorem in cohomology with compact support applied 
to 

HxY -Y 

H - Speck, 
R'7w, Z/n is the constant sheaf Hi(Y, Z/n) on H. The automorphism f acts on 
it and, at h e H, it acts the way h acts on H'( Y, Z/n). At the identity element 
of H, the action of f is trivial. An endomorphism of a constant sheaf over a 
connected base is constant, hence f acts trivially everywhere, and the prop- 
osition is proved. 

COROLLARY 6.5. The conclusion of (6.4) holds in I-adic cohomology. 

The proof is a passage to limit. 

6.6. Proof of 6.2. On XTCB X XT'.B' we have commuting actions of GF, 
TF, and TIF (GF acts diagonally). By Kiinneth's Theorem, we have to prove 
that 

Hc*(XTcB X XT'CBI) ,f ' = , 

where the symbol Ma, , applied to any TF x T'F-module M, means the subspace 



REDUCTIVE GROUPS OVER FINITE FIELDS 137 

of M, where TF and T'I act by 0 and 0'. 
ILet U (resp. U') be the unipotent radical of B (resp. B'). 
Let STCB = {g e G I g-'Fg e FU}, ST'cB = {g' e G I g''-Fg' e FU'}. 

The unipotent group (u nFU) x (U' n FU') acts freely on STCB X ST'CB' 

and the orbit space is XT-B x XTT'B' (see (1.17)). It follows that 

HC(XTCB X XT'CB')(- d)_ H ST(STCB X STCB') 

where d is the dimension of (u nFU) x (U' n FU'). This isomorphism is 
compatible with the action of GF x TF x T'F; moreover this group acts 
trivially on Q,(-d). Hence it is sufficient to prove that 

HC*(STCB X ST'CB')'01 HC',(STCB X ST'cB'/G )OO = 0 
The map 

(g, g') H-b (x, x', y), x g-'Fg, x' = g'-'Fg', = g-lg' 

defines an isomorphism of STCB X STCBI/GF with 
3 {(x, x', y)e FU x FU' x G xFy = yx'}. 

Under this isomorphism, TF x T'F acts on S by the formula 

(6.6.1) (x, X', y) - (t'lxt, t' 1x't', tlyt'), (t, t') e T x TPF 

Let U'- be opposed to U' with respect to T'. Any g e G can be written 
uniquely in the form g = ugfngU, with with ug e U n flg U'n-1, ng e N( T, T') 
(see (6.1)), u4e U'; this follows easily from Bruhat's Lemma. For any 
w e W(T, T'), let GW be the set of all g e G such that ng represents w. Then 
(Gw)weW(T,T') is a finite partition of G into locally closed subschemes. It has 
the property (6.6.2) below, expressing the fact that the closure of a Bruhat 
cell is a union of Bruhat cells. 

(6.6.2.) For a suitable ordering of W(T, T'), the unions EW UW'<W GW 

are closed. 
Let Sw {(x, x', y)c SI ye GW}. Then (Sw)weW(T,T) is a finite partition of 

3 into locally closed subschemes, stable under TF x T'F. It inherits a prop- 
erty analogous to (6.6.2), that is, the unions UW <W 9w, are closed for any w. 

The spectral sequence associated to the filtration of S by these unions 
shows that, in order to prove that H,*(S)0oa, = 0, it is sufficient to prove that 
H,*(Sw) , = 0 for any we W(T, T'). 

Let 
HW = {(t, t') e T x T' I t'F(t')-l = F(il)-'tF(t)-'F(i')}I 

where wb e N(T, T') represents w. Then HW is a closed subgroup of T x T', 
containing TF x T'F. We define an action of HW on Sw as follows. Let 
(t, t') e Hw; for (x, x', y) e 3w define 
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ft t,(x1 x', y) = (x, x', ) 

where 

= t-xF(uy)tF(t-1u-1t), 
x't'1_x'F(u' )-1t'F(t'-1u' t') 
= t-'yt' . 

It is easy to check that (x, x,) e Sw, hence ft,,,: S, - SW. It is also easy to 
check that f f = g for (ti, t') e Hw, i = 1, 2, hence ft t, defines an 
action of Hw on S3. It is clear that this action extends the action (6.6.1) of 
TF x TIF on SW The theorem now follows from 6.5 and the 

LEMMA 6.7. If the character 00' of TF x T F is trivial on H, l ( TF X T F), 
then 0'-' = 0 o ad (F(w)) (as characters of Y(T')). 

The subgroup Hw of T x T' is the kernel of the composite map 
x_'Fx t-- -d * ( t. T x T' )e T x T' t adF(w)(t.) 

Applying the functor Y, we get that Y(Hw) is the kernel K of 

Y(T) x Y(T') Fx - x Y(T) x Y(T') adF(w)(x') - x Y 

By (5.29), the triviality of 00' on H? f n(TF x T"F) means that, when we view 00' 
as a character of Y( T) x Y( T'), it is trivial on (F- 1)(K( Q) n ( Y( T) x Y( T')). 
Since the map F - 1 is injective, this intersection is 

Ker (ad F(w)(x') - x: Y(T) x Y(T') - Y( T)) 

and the assumption becomes the triviality of 00' on Ker (ad F(w)(x') - x), i.e., 
the identity O o ad F(w)(O') = 1. 

We will now conjugate (6.2) with the character formula (4.2) to get 
quantitative results. 

THEOREM 6.8. Let 0 c (TF), 0' e (T F) . Then 

<R', R7 />GF = {w c W(T, T ) I adw(0') = 0} . 
THEOREM 6.9. 

(6.9.1) F zu(EGF QT,G(U)QT',G(U) IN(T, TPI)FI 
( G | unipotent I TF I TIF | 

We will prove (6.8) and (6.9) simultaneously, by induction on the dimen- 
sion of G. 

LEMMA 6.10. If (6.9) holds, for G replaced by Z0(s), where s e GF is any 
semisimple element not contained in the centre Z of G, then 

(6.10.1) <RT, RT'>G' = # {W E W(T, T )F adw(0') = 0} + a 
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where 

ESCTFnlz O(s)OP(S-1( 1F QT,G(U)QT',G(U& I(,TPF) ( G F unipotent T | T I / 

In particular, (6.9) implies (6.8). 

According to (4.2) we have: 

<RT, RT;> 1 GF I EgleGF Tr (g1, RT) Tr (gy', RT) 

__ 

1 

__T__ ___T__ 

IFI______ ) 12 g,g;eGF O(g-'sg)O'(g''sg')' 
| G Zsemis). Z(S g- 1g e TGF 

9' 1sgl e T/F 

X ue ZO(s)F QgTg-1,Z(s)(U)Qg9Tlg91,ZO(s)(U) 
unipotent 

With our assumption, this can be written as 

1 1 - _ 
| I |ser=GF IZ0()FI Egg9 e GF 9(g lsg)O'(g s G semis. g-lsg e:TF 

gt lsgl e TF 

I Nzo(s)(gTg-1, g'T'g'-1)F I 

I TF I I TI I 

The formula (g, g', n1) t (g, n, nj), n = g'-1nlg establishes a one-to-one corre- 
spondence between the sets 

{(g, gI, nj) e GF x GF x GF I g-'sg e TF, g' sg' e T F, 

n, e N o(8) (g Tg, g'T g,-1)F} 

{(g, n, n1) e GF X NG(T, TP)F X ZO(S)F I g-lsg e TF} 

It follows that 

<RT, RT'> =F Es e GF 1(S)F IG I semis. IZO~) 

X Eg e GF 0(glsg)OP(ng isgnl)1 |Z(S)F I 
'nGNG(T,TI)F T F T IF 
g-1sg eTF 

- a + I EteTF O(t)O'(ntn-')|' I GFI 
I G F nNG (T, T,)F ITF IIT IF 

- a + IF 1tnc(TeT1)F IF I 1teF TO(t)O'(ntn ) I T I TF 

- a + #{we W(T, T')F adw(O') = 0} 

and (6.10.1) is proved. 

Proof of 6.9. Let G = G/Z; the centre of G consists of the identity ele- 
ment. Both sides of (6.9.1) remain unchanged when G is replaced by G; for 
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the left hand side this follows from (4.1.1), while for the right hand side this 
is easy to check. Hence in order to prove (6.9), we may assume that the 
centre of G has a single element; moreover we may assume by induction that 
the conclusion of (6.9) is true for G replaced by Z0(s), where s C GF is an 
arbitrary non-central semisimple element, and for any two F-stable maximal 
tori in Z0(s). (To start the induction we may take G to be the group with 
only one element in which case (6.9) is clear.) It follows from (6.3) that for 
any non-trivial character 0 of TF one has <RI, RY,> = 0. Substituting this 
information into (6.10), we see that if TF has any non-trivial character, then 
a = 0 which proves (6.9). A similar argument applies when I TF I # 1. It 
remains to check the special case where I TF| = I TIF I = 1. In this case, we 
must have q = 2, and T, T' must be Fqsplit tori. In particular, T and T' 
are conjugate under GF, hence 

#{wC W(T, T')F I ad w(O') = O} = I W(T)F I W(T) I 
Moreover RI and R', are both equal to the representation of GF induced by 
the unit representation of BF, where B is an F-stable Borel subgroup of G. 
It follows that 

(1.10) <RI, RY> = I BF\GF/BFI = I W(T) I 
Substituting in (6.10) we get (6.9) in this case. This completes the proof of 
(6.9) (and of (6.8) by (6.10)). 

7. Computations on semisimple elements 

The following result describes the Euler characteristic of the scheme 
XTCB. Let v(G) (resp. v(T)) be the Fq-rank of G (resp. T). 

THEOREM 7.1. 

X(XTCB) = QTG(e) (l)a(G)-a(T) GE 
StG (e) ITF1 

(Here StG is the Steinberg representation of GF, identified with its character.) 
We may assume that the centre of G is reduced to a single element and 

that the statement is true when G is replaced by Z0(s), where s G GF is any 
non-central semisimple element. 

We first assume that TF has a non-trivial character 0. The Steinberg 
representation occurs in RT* = Ind G F(1) (T* c B* as in 1.8), hence, by (6.3), 
it does not occur in R': <R', StG> = 0. It is known that 

StG (g) = ((-G) (-gfZO ())5Stzo(g)(e) , g c GF semisimple 
0 , g e GF non-semisimple . 

If we use 4.2, it follows: 
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Es e GF - -(Z() Sz Eg) e GF QgTg-l1,z(s)(e)0(g'sg) =- 0 

(sum over the semisimple elements s of GF). 
By our assumption, we may substitute 

Q gTg-1,Z0()(e) ( J_(Z O(s)),,(T) I ZO(s) 
Stzo(.) (e)IT- 

for all s # e: 

(\ J =s e GF gEg 0 GP' 0(g'sg) + StG(e)QT,G(e) = 0 
T F sue g-lsgeTF 

GF I teTF (t) + StG (e)QT, G(e) = 0 
TE t=,-eT 

Since the character 0 in non-trivial, EteTF0(t) = 0 and the desired 
formula for QT, G(e) follows. 

In the case where i TF I = 1, T must be an Fqsplit torus and q = 2. In 
this case, QT, G(e) = I G' 1/1 B*F 1, where B* is any F-stable Borel subgroup 
(1.8). This agrees with the statement of the theorem and ends the proof. 

COROLLARY 7.2. For any semisimple element s e GF, 

Tr (s, R () = (e(ZO ()) - (T) 1 geGF 0(g'sg) T 
~~~~~StZo(S) (e) ITF glgeTG 

This follows from (7.1) and 4.2. An equivalent statement is: 

PROPOSITION 7.3. 

(_1)G(G) (T)RT ? StG = IndTF() 

PROPOSITION 7.4. If 0 is a non-singular character of TF (5.19) then 
()c(G) 

-a (T)RO can be represented by an actual GF-module. If 0 is in general 
position (5.15), (- 1)?aG-c'T)RO is irreducible. 

By embedding G in a group G1 with connected centre and the same 
derived group, as in (5.18), we reduce to the case where 0 is in general posi- 
tion. It remains to use (6.8) and (7.1). 

PROPOSITION 7.5. Let s C GE be a semisimple element. The character of 

(7.5.1) S ST /-e (TW (s) (G))-((T )- 
StG (S) s e T 

equals I Z(s)F I on elements conjugate to s in GF and zero on all other elements 
of GF. 

Let , be the character of (7.5.1) and let 4a' be the class function on GF 
defined by 
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P, (g) =I Z(s)" I, g conjugate to s in G' 
0 ,otherwise. 

In order to prove that , = 4a' it is sufficient to prove that 

<P, P> = <9, P'> = <4', 4a'> (see (0.3)) 
We have <,a, ,'> Z(s)F 1; from (6.8) we see that 

12 ET 9 io e (TF)- 6O(s-')6(s) #I{nc N(T, T )F ad n(O ) =O } TF I 
<tG(fSi) T' > s O) 9 (TfF)-,, 

- 
1 

2 OE9s (s-')O(nsn-') I T - 1 
StG(S)2 ~e TF,- 

nsn-1 G T 

S ) {T s, nc GF sn = ns} 

- Z(S)F # {F-stable maximal tori in Z0(s)} = 
Z()F I 

StG(S)2 

(by [15, Cor. 14.16]) . 
By (7.2), we have 

<fe I,> NO 
1 

- 
T Fae() O(S1) )a(G) -a (Z0(s)) EgeGF O(g',sg) e,? = > ,u(s) = ( ) ()e (TF) e) StZO(S) (e) TF I gsg e TF 

1S) ET Eg e GF TF 1(s)(gsg) 
StG() seT g-lsgeTF 

=-S I )# {TEs s, g c GF I Sg = gS} 
StG(S)2 

- Z(S)F # {F-stable maximal tori in Z?(s)} = I Z(s)F 
StG (S)2 

and the proposition is proved. 

COROLLARY 7.6. For any p c A9(GF) and any semisimple element s e GF, 

(7.6.1) Tr (s, (F = 
S(t)( 

_ 
G)cs(G) a(T)<p RO> 

StG(S) s e T 
In particular, if s c G-F and is regular semisimple, contained in a unique 
torus T, 

(7.6.2) Tr (s, p) = TOC(TF) 6(5)<P, RT> 

(7.6.3) dimp = I(TF ( 1) (G) g(T)<P RI > StG(e) ET 10; TT 

COROLLARY 7.7. For any irreducible representation p of G-F there exists 
an F-stable maximal torus T and a character 0 of TF such that <p, R> # 0. 

This follows from (7.6.3). 
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DEFINITION 7.8. An irreducible representation p of GF is said to be 
unipotent if <p, R'> # 0 for some F-stable maximal torus T. 

By (6.3) and (7.7), p is unipotent if and only if <p, RI> = 0 for any 
F-stable maximal torus T and any 0 e (TF)', 0 # 1. For example, any 
irreducible component of Ind*F (1) (B*F an F-stable Borel subgroup) is a 
unipotent representation. For unipotent representations, (7.6) becomes: 

PROPOSITION 7.9. Let p be a unipotent representation of GF and let 
s C GF be a semisimple element. Then 

Tr(s, p) = I (_J)1(G)-G(T)<p R1> 
StG(s) s cT 

In particular, if s C GF is regular semisimple contained in a unique maxi- 
mal torus T, Tr(s, p) = <p, RT> and 

dim p = I (-1)c(G) ((T)<P, RT> 
StG(e) 

E 

It follows that if B is an F-stable Borel subgroup of G and T is an F- 
stable maximal torus in B, we have Tr (s, p) = <p, Ind GF(1)>; in the case 
where <p, Ind GF (1)> # 0, this is a result of Curtis, Kilmoyer and Seitz (see 
C. W. Curtis, On the Values of Certain Irreducible Characters of Finite 
Chevalley Groups, Ist. Naz. di Alta Mat. Symp. Mat. XIII, 1974, 343-355). 

PROPOSITION 7.10. Let Gad be the adjoint group of G. Then, the restric- 
tion to GF of a unipotent representation of (Gad)F is irreducible; non-isomor- 
phic unipotent representations have non-isomorphic restrictions; and every 
unipotent representation of G is such a restriction. 

It suffices to check that, if a, r are unipotent representations of (Gad)F, 
then <v, Z)GadF = <v, Z>GF. Let G1 be the image of GF in (Gad)F. One has 

<a, Z>GF = Kv, Z>G1 = <IndGad (Res a), Z>GadF 

= Se (GadF/GF) <v (0 0, Z_>GadF 

By the exclusion theorem 6.3 and (1.23), (1.27), <v 0 0, Z>GadF = 0 for 0 + 1, 
hence the proposition. 

PROPOSITION 7.11. Let p be a virtual representation of GF such that 
Tr(su, p) = Tr(s, p) for any s C GF semisimple, u C GF unipotent, su = us. 
Let T be an F-stable maximal torus and let 0 be a character of T. Then 

<P, RT>GF = (-1)g(G),(T) <P (? StG, RT>GF = <P, 0>TF 

The Steinberg character is integral valued, hence by (7.3), 
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(-1l)G ( ) ( ) < (8)StG, RO>GF = KP. (1)()( StG ? RT>GF 
= <p, IndTF (0)>GF = <p, O>F. 

We now prove the identity 

(7.11.1) K<P RO>GF = <P9 O>TF 

The special case of this identity 

(7.11.2) <1, RT>GF = 1 

follows from the fact that the Euler characteristic of XTCB/GF (which is the 
same as the Euler characteristic of {g c G I g-'Fg c FU}/GF x TF = FU/TF 
by (1.17)) equals 1. If we use (4.2), (7.11.2) can be written in the form 

(7.11.3) - ZOF O )F 19eGF EueZO(s)F QgTg--IZO(s)(U) = 1 G G semis. I z (s) I g-1sgeTF unipotent 

This implies, by induction on the dimension of G, that 

(7.11.4) G1 GF QT G(U) = 
1 

G unipotent TF 

Indeed, by substituting (7.11.4) in (7.11.3) we find a true identity: 

IGF I Es eGF IF #{gG Igg } 
IG semis.IT 

We apply (4.2) again and use (7.11.4) to compute: 

<P. RT>GF IF EseGF 
1 

IGF I semis. IZO(S)FI 

X Eg e GF EuezO(s)F QgTg-1zo(s,)(u)0(g-'sg)' Tr(s, p) 
g-Isg e TF unipotent 

- F EseGF ge GF 1 O(g'sg)'Tr (s, p) G semis. g-Isg e TF T F 

I 1F tTF(t) Tr (t, p) = <P O>TF 

PROPOSITION 7.12. Let p be as in (7.11). Then 

(7.12.1) P =(T) IW(T)F I 1:0e(TF)- <PJ O>TFRJ 

(7.12.2) P (3 StG = E(T) _( I(G )F | e(TF)- <PJ O>TFRTJ 
IW(T)FI 

where (T) means sum over all GFconjugacy classes of F-stable maximal 
tori T. 

The character of p ( StG is a linear combination of the form E(TO) CT, ORT 
(sum over all GF-conjugacy classes of pairs (T, 0)). The coefficients CT,o are 
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determined by (7.11) and (7.12.2) follows. 
Now let p' (resp. p") be the right hand side of (7.12.1) (resp. (7.12.2)). 

We have clearly 

(7.12.3) <p', p'> = <p,, P"> 

and by (7.11), 

(7.12.4) <p, p'> = <p 0 StG, P"> 
We note also that 

(7.12.5) <p, p> = <p 0 StG, P ? St1> 
This follows from the fact that the number of unipotents in ZO(s)F equals 
StG(s)2 for any semisimple element s C GF (see [15, Thm. 15.1]). By (7.12.2) 
we have 

<p 0 StG - P, p% P StG - > = 0. 

This, together with (7.12.3), (7.12.4) and (7.12.5) implies: 

<P - P', P - p'> = 0 

hence 

P = p 

Remark 7.13. It is known that 

<Pi P>GF = (T) I (TFI<Pi P>TF' 

(N. Kawanaka, A theorem on finite Chevalley groups, Osaka J. Math. 10 
(1973), 1-13); this could be also deduced from (7.12.1) and (6.8). 

COROLLARY 7.14. 

(7.14.1) 1 (T) W(T) 
W X(T)FoT 

(7.14.2) StG = E(T) v-1 T) R 

In particular, 

<StGy RT'> = (_ l),(G)-,g(T) 

Here is an alternative proof of (7.14.1). In the language of (1.4), (7.14.1) 
asserts that 

Ewew R'(W) = WI 1.- 

Since (X(w))wew is a partition of the flag manifold into locally closed 
subschemes, we have 
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E WR'(w) == E (- 1)Wfft(XG) 

as virtual representations of G'. The action of G' on XG is the restriction 
of the action of the connected group G; by (6.5), G' acts trivially on HC*(XG) 
and it remains to use the fact that the Euler characteristic of XG equals I W 

COROLLARY 7.15. 

(7.15.1) StG = E (T) 1W(T)F I IndTF(1) 

(7.15.2) StG ? StG = E(T) 1 Ind (1). 

This follows from (7.1) by tensoring with StG, and using (7.3). The 
formula (7.15.1) is due to B. Srinivasan (On the Steinberg character of a 
finite simple group of Lie type, J. Australian Math. Soc. 12 (1971), 1-14). 

8. Induced and cuspidal representations 

8.1. Let P be an F-stable parabolic subgroup of G and let T c P be an 
F-stable maximal torus. We denote by Up the unipotent radical of P. The 
quotient group P/ Up is a connected reductive algebraic group acted on by F. 
Let w: P )PI Up be the canonical projection. w induces an isomorphism 
T > 17(T) hence also an isomorphism TF -* w(T)F. Let 0 be a character 
of TE and let j be the corresponding character of wr(T)F. We denote by RT P 
the image of the virtual representation R$~(T) of (P/ UP)F under the canonical 
embedding fR((P/ UP)E)c j(PE) With these notations, we have the following 
generalisation of 1.10: 

PROPOSITION 8.2. 

RO = IndpF - 

We choose a Borel subgroup B in G such that T c B c P. Let 9) be the 
set of all parabolic subgroups P' in G such that P' and P are conjugate under 
GF; this is a finite set. We have 

XTCB = llp'e PX(P') 

where 

X(P') = {g C G I g-'Fg C FU, gPg-' = P'}/U n FU, 
with U the unipotent radical of B . 

(Note that g-'F(g) C FU implies F(gPg-') = gPg-r.) Let P' C and let g1 C GF 
be such that g1Pg7' = P'. If g C G, g-'F(g) C FU, gPg-' = P', we have 

g1jg C P (g'g)-'F(g1g) C EFU; 
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by sending g to r(g71g) we get an isomorphism X(P') - X,(T)C,(B) It 
follows easily that the GF-module H,(XTCB) is canonically isomorphic to the 
GF-module induced by HC(X,(T)11(B)) regarded as a PF-module; moreover this 
isomorphism is compatible with the action of TF. The proposition follows. 

THEOREM 8.3. Let T be an F-stable maximal torus in G such that T is 
not contained in any F-stable, proper parabolic subgroup of G. Let 0 be a 
non-singular character of TF (cf. 5.19)). Then (-1)G(G)-a(T)RO can be repre- 
sented by a cuspidal GF-module. 

Applying (7.5) for s equal to the identity element of GE, we see that the 
regular representation of GF is equal to: 

IndF (1) = I 
(TF) ,(1) ) )RT 

StG(e) ET Oec;(F) 

We apply this formula with G replaced by P/Up (P as in (8.1)); we then 
regard the regular representation of (P/ UP)F as a representation of pF on 
which UpF acts trivially (i.e., as IndPFF(l)) and we induce it to GF: 

IndUF (1) IndpF (IndPFF (1)) 

St ( _ ')_ (1 Up) -(T ) F 

Splup e) 
T 

where RI' is regarded as an element in 9k(PF) in the natural way. We now 
use (8.2) and the fact that any F-stable maximal torus T' in P/Up can be 
lifted to an F-stable maximal torus T in P in precisely I UpF I different ways: 

(8 
. 3. 1 ) nd lF 

( 1) = 
I ( _ ) Tc 

ae (GT ) (-a 
) RT (8.3.1) IndUF(1 = O (T)1)RT 

StG(e) ETCP 10 T) 

If P # G and T is as in the statement of the theorem, we see from (8.3.1) 
and (6.8) that 

(8.3.2) K(T1)G(c)-?T)R, IndF(1)> = 0 for any 0 C (TF)" P 

If 0 is non-singular, (- 1)Y'G'-cT)RO can be represented by an actual GF-module 
(7.4). This GF-module is cuspidal by (8.3.2). 

9. A Vanishing Theorem 

9.1. Let G be a reductive algebraic group over k. Let w = s, ... sn be 
a minimal expression for an element of the Weyl group W of G (0.4). The 
following desingularization of the closure O(w) of O(w) c X x X (1.2) has 
been considered by H. C. Hansen [6] and M. Demazure [3]. 

DEFINITION 9.2. O(s1 , s,,) is the space of sequences (Bo, .--, Bj) of 
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Borel subgroups, with Bi-1 and Bi in relative position e or Si. 

The maps 

?(E;S * *S.;) O (E;S * *S ._1) 0 ( )=X 

express 0 = O(s, , s,;) as an iterated fibre space over X, with fibre P' 
(1.2). The subspace Di c 0 where Bi-, = Bi is the inverse image of a section 
of 0(s, * * *, si )-O(s1, ** , six); it is a smooth divisor, and D = U Di is a 
divisor with normal crossings. The map (Bo, **.., Bj) F-9 (Bo, Bj) induces an 
isomorphism 0 - D O(w), and hence maps 0 to O(w): 0 is a resolution of 
singularities for O(w). 

9.3. Let T*, B* and U* be as in (1.7). For any character X: T* Gm, 
the T *-torsor E over X defined in (1.7) gives rise to a line bundle E, provided 
with X: E- E2 such that X(et) = X(e)X(t). For 11 e N(T*) with image w in 
W = N(T )/T*, the w-map of T*-torsors over O(w) ci X x Xconstructed in 
(1.7) induces an isomorphism 

P(ib): pr* E2 
- pr* Eoadw = pr* EW-l(2) 

which makes the following diagram commute: 

pr*E W pr E 

prI 
E, 

() 

{w-N(2). 
We will investigate its behaviour at infinity. 

9.4. Let X(T*) be the character group of T* and let C X(T*) R 
be the fundamental chamber (corresponding to B*). If C1 and C2 are two 
chambers, we write D(C1, C2) for the intersection of the (closed) radicial half 
spaces containing both C, and C2, and D0(C1, C2) for its interior. 

PROPOSITION 9.5. Let O(w)' be the normalization of the closure O(w) of 
O(w) in X x X. The map T(th): pr* Ei pr* EW-l(2) extends over O(w)' if 
and only if X e D(C, - wC). It vanishes outside of O(w) if and only if 
Xe D0(C, -wC). 

Let us consider T(th) as a rational section of pr* E,-, (0 pr* EW-l(2); it 
suffices to prove that, with the notations of (9.2), for each i, the order vi of 
P(tb) along the divisor Di c O(s1, ... , s,) is > 0 for X e D(C, -wC), >0 for 
Xe D0(C, -wC). The convex region D(C, -wC) is the intersection of the 
radicial half spaces containing C but not wC. Put wi = s, ... si. The gallery 
(C, w1C, w2C, ... , wC) connects C to wC; its walls are all the radicial hyper- 
planes that separate C and wC. The wall between wi_1C and wiC is defined 
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by the root wi(Jai), where ai is the simple root corresponding to si; C and 
w_1C are on the same side of it. The convex region D(C, -wC) is hence 
defined by the inequalities 

<Q, HWi-.(ai)> > 0 

(Recall that Ha denotes the coroot corresponding to a root a, cf. (5.1).) We 
will prove that 

(9.5.1) Vi = KX, HW i-(aj)> 

Let us lift the decomposition w = (s, ... sji)sj(sj+j ... sn) into a decomposi- 
tion b = tbi-'iw' in N(T*). We have 

When we aproach a general point of Di, the isomorphisms T(W) and T(wi-1) 
extend, and we are left to prove that the order along Di of 

NY(Aj: Ew-i11 E.11 

is 

<K, Hwvi,-(a,)> = <wti1(X), Ha.> 

we are reduced to the case where w is a fundamental reflection: all computa- 
tions occur within a minimal parabolic subgroup P, or P/Us, or the derived 
group of P/UP, or its universal covering SL(2). Let us make a direct check 
for G = SL(2), w # e and X the fundamental weight. 

(a) We take SL(2) in its obvious representation k2, T* = diagonal 
matrices, B * upper triangular matrices. The weight X is 

(0 a) a ', and H,> = 1 
(b) X = Pi, the space of homogeneous lines of k2 and the fibre of E2 at 

x is the corresponding line. 
(c) Up to a scalar, T(th) associates to u c (E2)x the linear form u A v on 

(E2)Y, for x # y. It vanishes simply for y - x. 

9.6. The assumptions (0.1.1) are in force from now on. Under the 
assumptions of (1.8), we have 

F*E2 = EF*2 (where F*X = XoF). 

On the inverse image X(w') of the graph of the Frobenius map F: X X in 
O(w)', the line bundle pr* Ey'1 0 pr* EW-t(,) is hence isomorphic to 

pr*(EFn,-iFF)- 

It will be ample if EF.*W-1j_j is ample on X, i.e., if F*w-X - X G - C. On the 
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other hand, if Xe D' (C, -wC), the section T(il) of it has as zero set the 
complement of X(w) in the projective variety X(w)'. If both conditions can 
be simultaneously fulfilled, then X(w) is affine. In terms of , =-w-IN-) 
the conditions read 

(9.6.1) be D0(C, - w-'C) , 
(9.6.2) F*p - wpe C C. 

THEOREM 9.7. If there is p e X(T*) ( R satisfying (9.6.1) and (9.6.2) 
then X(w) is affine. As a consequence,X(w) is affine as soon as q is larger 
than the Coxeter number h of G. 

It remains to prove that if q > h, then some , satisfies (9.6.1) and (9.6.2). 
The first condition will be fulfilled if , e C0, that is, if <pa, Ha> > 0 for each 
simple root a. We take ,a so that <pa, Ha> = 1 for each simple root a. We 
then have <Fp, Ha> - q, and <wp, Ha> = <a, w-'Ha>. If H = naHa is the 
highest coroot, E na, = h - 1 and 

<Fp- w, Ha> > q - <a, H> = q - h + 1 > 0, 
hence (9.6.2). 

THEOREM 9.8. If the character 0: T(w) Q* is non-singular, then 

H,*(X (tb) Q1) o H*(X(Tb)y Ql)o 
COROLLARY 9.9. If X(w) is affine and 0 is non-singular, then 

Ht(X(tb), YQ)o = 0 for i X I(w) 
Let us deduce (9.9) from (9.8). With the notations of (1.9), (9.8) means 

that 

(9.9.1) H*(X(w), SF0) - H*(X(w), SFo) 
If X(w) is affine, then H'(X(w), 3F0) = 0 for i > dim X(w) = I(w) ([10, XIV, 
3.2]). The sheaf Wo is locally constant, its dual is To-, and X(w) is smooth 
and purely of dimension l(w). By Poincare duality, Hc(X(w), UF) is dual (up 
to a twist) to H2'w-)(X(w), Fo0-), hence vanishes for 21(w) - i > I(w), i.e., 
for i < I(w). This proves the corollary. 

9.10. We first construct a nice compactification of X(w). Let w = s1. s 

be a minimal expression for w. We define X(s1, .A., S.) to be the space of 
sequences (B, *..., B,) of Borel subgroups of G, with B, = FBR and with Bi-, 
and Bi in relative position si or e. It is the inverse image of the graph of 
Frobenius by the map 
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In other words, if IF . X x X is the inclusion in X x X of the graph of 

Frobenius, it is the fibre product 0 x xxx F: 

X(;s ,*, * F E S) 

?(E;1s * * S.E) Xx XX. 

LEMMA 9.11. F is transverse to 0(s, *.., s), as well as to any intersection 
of the divisors Di. The fibre product X(s, *.. , sn) is hence a smooth com- 
pactification of X(w), with a divisor with normal crossings (sum of the 
traces Di of the Di) at infinity. 

We will show that F is transverse to any smooth G-equivariant scheme 
w: Y-e X x X over X x X (with G acting diagonally on X x X); that is, if 
w(y) e F, the sum of the tangent space to F at w(y) and of the image of dir is 
the whole tangent space of X x X at r(y). Indeed 

(a) the tangent space of F at r(y) is Tx x {0}; 
(b) the image of d7r contains the image of Lie (G) by the derivative at 

e e G of gv--ggy (by the equivariance of Y). Since the space X is homogeneous 
with reduced stabilizers this image projects onto Tx by the second projection. 

9.12. We now investigate how the covering X(wb) (with structural group 
T(w)') ramifies along the divisor Di. The structural group being of order 
prime to p, the ramification is tame. On each connected component of Di, it 
gives rise to a homomorphism z-i: Z(1) - T(w)'. 

Let x(t) e X(s1, ** , sn) be a one parameter family with x(O) a point of Di 
(not on any Di, i + i), and with the tangent vector x(O) transverse to Di. 
In technical terms: for S = spectrum of the Henselization of k[t] at (t), x is 
a morphism x: S X(s1, ** , sn) such that the closed point t = 0 is mapped 
to a point of Di not on any Dj, j # i, and that the inverse image of Di is the 
reduced scheme t = 0. Put x(t) = (B0(t), *.., Bn(t)) and let Ei be the pull 
back by to Bi(t) of the T-torsor E on X (1.7). If we factor il as in 9.5, 
the isomorphism T(th): E( Eon (over the generic point of S) factors as 
P(il') =P(ilw)P(&)(PThi1) and P(Th-1) and T(Wi) extend over S; T(gi) doesn't; 
rather, the composite x*T(9i)(xH_,(t)) does (9.5), hence T(tb) is of the form 

T(il)(x) = T.(xfwi-i,(#)) 

where TO: Eh --" En extends over S. The pull back under x of the T(w)'-torsor 
X(wl), to the generic point of S, is given by the equation 

(9.12.1) F(u) = To(uHw1_,(a,(t)) 

Let u0 be a solution, over S, of the equation 
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F(uO) = P0(u0) 

(this exists, because S is strictly Henselian and F and T0 extend over S); 
if we put u = uy, (9.12.1) becomes 

(9.12.2) Y-'adwF(y) = HW?-1(,)() . 

In other words: 

LEMMA 9.13. The T(w)F-torsor X(tw) ramifies along Di in the same way 
as the pull back under Hw,_,(,.): Gm - T of the Lang covering of T(w) ramifies 
at 0. 

The tame fundamental group of Gm is Z, (1), that of T is Y2 (1) (for Y 
the dual of the character group of T) and HWj induces x H- xHWj-(,,): 
Zp,(1) Y-Y(1). The Lang covering of T(w)F gives rise to the map 
YP(1) T(w)F described in (5.2). Hence the pull back (9.13) corresponds to 
the composite 

Zp (1 i-'a) I ~(,) > T(w)' 
For 0 a character of T(w)F, 'iF0 will ramify along Di if and only if 0 is 

not trivial on HWj1(a,)Zp(1). In that case, all higher direct images Rij*iWo of 
iF,0 (i > 0) under j: X(w) X(s1, * , sn) will vanish on Di . In particular, we 
have 

LEMMA 9.14. If 0 is non-singular, jIFs = jj 7F0 (extension by zero) and 
Rij*ffo = O for i > 0. 

Proof of 9.8 (in the guise 9.9.1). By (9.14), the Leray spectral sequence 
for j reads 

H*(X(Sl ***..., S), ij o0) > H*(X(w), So)) 
The space X(s1, ..., S.) being a compactification of X(w), the left hand 

side is by definition H*(X(w), HiF). 

Remark 9.15.1. By using arguments parallel to those of (1.6), one can 
show that the conclusion of (9.9): "for 0 non-singular, Hc(X(il), &j)o 0 0 for 
i # I(w)" holds true as soon as there is w' in the F-conjugacy class of w such 
that X(w') is affine. The criterion (9.7) can be used to check that this is 
always the case for the classical groups and for G2 except the case (G2, q = 2, 
w = Coxeter) for which a different method applies. 

Remark 9.15.2. Let (T', 0') be maximally split (5.17); under an isomor- 
phism T(w) -* T' (inducing T(w)F > TF), as in (1.18), 0' becomes a char- 
acter 0 of T(w)F. Proposition 5.24 and the proof of the Induction Theorem 
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8.2 show that the conclusion of (9.8) still holds for 0. The same applies to 
(9.9). 

THEOREM 9.16. If u e GF is a regular unipotent element, then, for any 
F-stable maximal torus T, we have QTG(u) = 1. 

We must prove that for any w e W, Tr (u, Hj*(X(w))) = 1. We know that 
Tr(u, Hc*(X(w))) is an integer, and that 

EweW Tr (u, Hc*(X(w))) = IW 
(see (7.14) and its proof). Hence it suffices to prove the 

LEMMA 9.17. Under the assumptions of (9.16), Tr (u, Hc*(X(w))) > 0, for 
any we W. 

Take w = s** sn as in (9.10) and let X(s1, * *, sn) be the corresponding 
compactification of X(w). For P c [1, n] we write Dp for the intersection, in 
X(s1 S*. sn), of the divisors Di (i e P) (9.11). For P = 0, Dp is X(s1, ** , sn). 

The additivity property of cohomology with compact support shows that 

(9.17.1) Tr (u, HC*(X(w))) = EPC[1,.] (-1)'lP Tr (u, H*(Dp)) . 

Let b be the unique fixed point of u in X. Then a = (b, ..., b) is the 
unique fixed point of u in X(s1, **., sn); it is contained in each Dp. The 
variety Dp being smooth and compact, Tr (u, H*(Dp)) is just the multiplicity 
of the unique fixed point a of u acting on Dp; to compute it, we may replace 
Dp by its completion Df at a. Let (xi) be a formal coordinate system for 
X( *.., S.) at a, such that xi = 0 is an equation for Q. In terms of these 
coordinates, u maps the point with coordinates x1, *... x *, into the point with 
coordinates P1(x,, ..., xx), ..., P,(x1, ..., xx), for some formal power series 
Pi. Since the divisor Di is preserved by u, Pi is divisible by xi. The jacobian 
matrix of u at (0, *.., 0) is hence diagonal; u being of order a power of p, it 
is the identity, and we have 

Pi = xi(1 + QJ). 
with Qi(0, * , 0) 0 O. The fixed point scheme of u is given by the equations 
xiQi = 0. 

Let Ei be the divisor Qi = 0. It is non-empty. The formula (9.17.1) can 
be rewritten 

Tr (u, Hc* (X(w))) = EP=E[l,.1 (-1)'Pl ]Jie D3i j op (Dj + Ej) 
=PCQC[in] (-l)IPrli e Q Dii Jj Q Ej 

=lEQC>,n] (pCQ (Q E 
= IJl Ej > 0 , 
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(the product of n divisors stands for the multiplicity of their intersection). 

PROPOSITION 9.18. Let s e GF be a semisimple element. Let v be the class 
function on G' defined by: 

f ZOZO(S)F I q'Z(7,()) Z(S)FV if g e GF is regular with semisimple 
2)(g) q-(ZS() part conjugate in GF to s 

t 0 ,otherwise. 

Then v is the character of 

Z(S)F I T I 0e (TF), 0( T 

(Here Z0Z0(s) is the connected centre of the connected centralizer of s, and 
l(ZO(s)) is the semisimple rank of ZO(s).) The proof is similar to that of (7.5); 
it uses (9.16) and (4.2) instead of (7.2). 

For any p e 9K(GF) we have 

(9.18.1) <P, v> ZOZO(s)F Iq(Z0 (s)) EUeA(s) p(su) 
IZO(S)F I As 

where A(s) is the set of regular unipotent elements in ZO(S)F. 

COROLLARY 9.19. For any p e 9(GF), the average value of the character 
of p on the regular elements in GF with semimple part s, equals 

1 
ucA (s) Tr (su, p) = 1 

E T I TF I Lo(TF), f(5)<Pl RT> A(s) IIZO(S)F s eT 

This follows from (9.18), (9.18.1) and the following lemma. 

LEMMA 9.20. The number of regular unipotent elements in GF equals 
G F |/| ZOF I q. 

(Here Z0 is the connected centre of G and I is the semisimple rank of G.) 
To count regular unipotents in GE, we observe that any such element is 

contained in a unique Borel subgroup and then count the regular unipotents 
in GF contained in a fixed F-stable Borel subgroup. 

10. A decomposition of the Gelfand-Graev representation 

lo.1. Let (GF) be the set of isomorphism classes of irreducible repres- 
entations of GF (over Q1). For any p e (G F), there exists an F-stable 
maximal torus T and 0 e (TF) such that <p, RI> # 0 (7.7); moreover the 
geometric conjugacy class [0] of (T, 0) (see 5.5), is uniquely determined by p 
(6.3). We thus get a well-defined surjective map 

(10.1.1) (G ) > 5 
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where S is the set of all geometric conjugacy classes of pairs (T, 0). 

10.2. In the rest of this chapter we shall assume that the centre Z of 
G is connected. Let T*, B* be as in (1.8). Let U* be the unipotent radical 
of B * and let U.* be the subgroup of U* generated by the root subgroups 
corresponding to non-simple roots. The quotient U*/U.* is commutative and 
is a direct product over the simple roots a: Ha U,*, with U,* one-dimensional. 
Let I be the set of orbits of F on the simple roots. For any i e I, let Ui* = 

JIlaC U,*; then U*/U.* IIiE Ui*. This decomposition is F-stable, hence we 
have also U*F/U.F l iei U%*F. 

We consider the Gelfand-Graev representation IF = Ind{*FF (X) where X is 
any character of U*F which is trivial on U.*F and defines a non-trivial char- 
acter of Ui*F for all i e I. All such X are conjugate under T *F, since Z is 
connected, hence the GF-module IG is well-defined up to isomorphism. 

Let AG be the class function on GF which equals I ZF I q' on any regular 
unipotent element in GF and vanishes on all other elements. (I is the semi- 
simple rank of G.) The following result shows that this is the character of 
a virtual representation of GF (which will be also denoted by AG): 

PROPOSITION 10.3. For any subset J c I, let P(J) D B * be the parabolic 
subgroup generated by B* and by the root subgroups corresponding to minus 
the simple roots in F-orbits in J. Let L(J) be P(J) modulo its unipotent 
radical. Then 

(10.3.1) AG = J (-1)'1J Indp(<)F (FL(J)) 

(Note that the centre of L(J) is connected, since that of G is, hence LC(J) is 
well-defined.) 

Remark 10.4. The following identity is a formal consequence of (10.3.1): 

FG = EJI(1)' Ind GF 
)F (/AL(J)) 

10.5. Proof of 10.3. For any subset J c I, let C(J) be the set of char- 
acters X of U*F with X U.*F = 1 and such that X induces a non-trivial char- 
acter of UP* (i E I) if and only if i E J. It is easy to see that, for any X E e(J), 
we have 

Indp(J)F (LcJ)) = IndU*F (X) 

Let u0 E U*F be a fixed regular unipotent element; in other words, the image 
of u, in Ui*F is non-zero for any i E I. It follows that 

Exec(J)X(u0) = (-l)[J[ 

Hence (10.3.1) is equivalent to: 
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(10.5.1) AG = Exe x(u0) Ind'UF (X) 

where Ce U,1 C(J). The character of the right hand side of (10.5.1) 
vanishes at non-unipotent elements. Its value at u E U*F is: 

I U FI ZgGF EX X(g ugu") 
(10.5.2) g'ug Ge U*F 

= q1 U*F |-1 # g E GF I g lug G U*Fg1 uguE U.F } 
This is zero unless u E U*F is regular unipotent; we now assume that u E U*F is 
regular unipotent. For any g e GF with g'ug e U*F, we have u E B n gB*g-1; 
but B * is the only Borel subgroup containing u, hence g E B *F. If g = tn', 
t e T*F, u' G U*F, the relation g-lugu0 e U.*F determines t uniquely modulo 
ZF and leaves u' arbitrary. Thus the expression (10.5.2) becomes 

qI U *F ZF I U*F = ZF I q1 

and (10.3) is proved. 
We shall now prove the following 

LEMMA 10.6. Let M be a virtual representation of GF such that 

<M, M>= ZF I q and <M, Rf> = -E = -+1 
for any F-stable maximal torus T c G and any 0 E TIF. Then 

M = Exe) 6xAx 

where ax ? +1 and MX are distinct irreducible representations of GF such 
that 

-S Ro. Mx = x 1:(T, s) ty 1 R) > modGF <T, RT 
[0] =x 

Let {M} be the set of all p E (GF)' such that <p, M> # 0; {M} has at most 
I ZF I q1 elements. By our assumption and by 5.7(i), the map {M} - 3 (the 
restriction of (10.1.1)) is surjective. Since 5 I = I ZF I q1 (5.7), it is bijective 
and {M} has exactly I ZF I q1 elements. Let MX e {M} be the element corre- 
sponding to xe o5 under this bijection; we must have M = axX 
ax = ?1, since <M, M> = I {M} 1. If (T, 0) is such that [0] x, we have 

<M, RO> = ax<MX, ROT> = ET 
from the orthogonality of the R 's (6.8) we have 

ITO) ~~~~~ 
modGF TR , RT> 

where Mx is orthogonal to all the RETs. It remains to prove that Mx =O. Since 
Mx is irreducible, this would follow if we prove that <Mx - Mx, Mx - Mx> = 1; 
we certainly have <Mx - Mx, Mx -' ? 1, hence it is sufficient to prove 
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that 

Ex eY <MX MX, M ' > =M>=ZF q 
or, in other words, that 

E(T,O) 1R, O 
modGF <RT R?> = ZF q1 

By (6.8), this is equivalent to the identity 

ET ~ 1 
FIITF1 = JZF Iql 

modGF I W(T) 

which is the same as 

Ewew det(q - wz) =q wIW 
where w is regarded as an automorphism of the lattice XO = X(T/Z) and z is 
defined by F* = q.z-1. The last identity (compare Steinberg [15, p. 91]) can 
be written as 

EOS?;5 (- 1)'ql'i 1 wE w Tr (wz, Ai(XO)) = q 

and follows from the fact that Ai(Xo)W 0= for i > 0 (5.8). 

THEOREM 10.7. We recall that Z is connected. Let x e 3, and x' be a 
representative of the corresponding semisimple conjugacy class in the dual 
group (5.24). We define 6x to be the Fq-rank of the centralizer of x'. 

(i) The formulae 

(10.7.1) PX = E(T,) modGF <R(J R > > 

and 

(10.7.2) P= (_)a(G)Bx RT,)odGF O x 
E(T,0)ma]d= 

F 
<RT RT >T 

define irreducible representations of GF. The I ZF I q1 elements px e (GF) 
x e 3 (resp. p. c (GF)', x G 3) are distinct. The maps x P-3 px, x v-* p are two 
cross-sections of the map (10.1.1). 

(ii) One has 

(1 0.7.3) ]FG = ExeS Px = IT,)ModGi' <R, RO> T 

(10.7.4) AG = (1) px =(T,)modGF 
- 

10 RT> 
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(iii) Assume that all the roots have the same length. Fix (T, 0) in the 
geometric conjugacy class x, let S be the connected centralizer of ( T, 0) (5.19) 
and let 6s be the corresponding character of SF. We have 

(10.7.5) Px a StG = IndSF (0s Sts 0 Sts) 

(10.7.6) Px ? StG = IndSF (0s ? St5) 

(iv) Let S* be the centralizer of x'. We still have 

(10.7.7) dim px GF /StG(e) *Sts.(e) 
5*F I/StS*(e) 

(10.7.8) dim = GF - /St() 
5 *F I/StS (e) 

If we tensor the right hand side of (10.7.1) by StG we find (by 7.3): 

(10.7.9) 1 IndGI (0) 
E(T0]mod <AR9, RO> 

T 

Let us first assume that all roots have the same length. By 5.14(ii), the 
GF-conjugacy classes of pairs (T, 0), T ( G, with [0] = x are in one-to-one 
correspondence with SF-conjugacy classes of pairs (T', Os I T'), with T' an 
F-stable maximal torus in S. Moreover, by 5.14 (i) and (6.8), we have 
<R', RT> I Ws(T')F 1. Thus the expression (10.7.9) equals 

ETI'I_ SF 1F Ind<OF (sI T') =ET'S ()F 1 IndS (IndTtF (1) oa) m 
I~ Ws(T') modSF IWs(TP) 

- 
IndSF (ET 'S |w( T)F I IndTVF(1) OS) 

IndSF (6's ? Sts C Sts), by 7.14. 

Similarly, by tensoring the right hand side of (10.7.2) by StG, we find 

IndS (-T'QS | i) Inds'F (1) 0D = IndSF (as St5) , by 7.14 . 
Wod (TP)F( 

In general, the G-conjugacy classes of pairs (T, 0), with [0] = x, are in 
one-to-one correspondence with the G *F-conjugacy classes of pairs (T', 0'), 
with 0' conjugate to x' (5.24), i.e., with the S*F-conjugacy classes of pairs 
(T', x'), (T' c S*). The dimension of 10.7.9 is that of 

~T'czS~ 1 IndF (1) STI S* I WWs(T)F IIndTF 

(because I G*F | GF [), while that of (10.7.2) 0 StG is 

ET'cS S* l Ws(T)F I ndTF (1) 
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and the same proof as above gives (10.7.7), (10.7.8). 
We now show that (10.6) can be applied with M = FG or AG. We have 

<AG, AG> 1 (I ZF ql)2 # {regular unipotents in GF} 

G 1 I~Fq) F 
1 

(I ZF Z q)2 G =ZF I ql (by 9.20) . 

The analogous identity <7G, rG> = ZF I q1 follows from R. Steinberg ([14]). 
Now, for any (T, 0), <AG, R'> equals the average value of the character of 
R' on the regular unipotents in GF hence equals 1, by (9.16). 

We now prove that <7G, RD> = (-1)a(G)c-(T) for any (T, 0). Using a result 
of Rodier (cf. T. A. Springer, Caracteres de groupes de Chevalley finis, Sem. 
Bourbaki 429, Fev. 1973) and the induction formula 8.2, we are reduced to 
the case where T is not contained in any proper F-stable parabolic subgroup 
of G. Using (10.3.1) and the already known fact that <AG, R9> = 1, we see 
that it is enough to prove 

(10.7.8) KInd74>)F (FL(J)), RT> =0 , J # I. 
(Note that in this case (-1)(G)'-(T) ( 1)"'.) Assuming that the theorem is 
already proved for groups of dimension strictly smaller than that of G and, 
in particular, for L(J), we see from (10.7.5) and (8.2) that Indp(J)F (FL(J)) is a 
linear combination of terms of the form R", with T' c P(J), FT' = T' so 
that (10.7.8) follows from the orthogonality formula (6.8). 

Now (10.7.1), (10.7.2), (10.7.5), (10.7.6) follow directly from (10.6) applied 
to M = "G or AG, except for an indeterminacy of sign. To remove this 
indeterminacy of sign, we only have to check that the right hand sides of 
(10.7.1) and (10.7.2) have strictly positive dimension; but they are both of 
the form I GF l/l S*F I up to a power of q, by the first part of the proof. The 
theorem is proved. 

COROLLARY 10.8. For any p e (GF)< the average value of the character 
of p on the regular unipotents in GF equals 0, 1, or -1. This value is 4 1 
if and only if p = p'for some x E S. 

Indeed, this average value is just <p, AG>. 

Remark 10.9. If we assume that p is a good prime for G, then all regular 
unipotents in GF fall in a single GF-conjugacy class so that the character of 
p at any regular unipotent in GF equals 0, 1, or -1. This was first proved 
in the article by J. A. Green, G. I. Lehrer, and G. Lusztig (On the degrees of 
certain group characters, to appear in The Quarterly Journal of Mathematics). 

PROPOSITION 10.10. Let x E 3. Let (T, 0) be a maximally split pair in x 
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(see (5.17); (T, 0) is uniquely defined up to GF-conjugacy by (5.18)). Then the 
virtual representation (-1)''RT of GF can be represented by an actual 
GF-module, in which p, and p' occur with multiplicity 1. 

By (5.23), there exists an F-stable parabolic subgroup P c G such that 
T is contained in some F-stable Levi subgroup L of P and (T, 0) is non- 
singular in L. L has connected centre, hence, by 5.20, (T, 0) is non-degenerate 
in L. Let RLL be the virtual representation corresponding to (T, 0) with 
respect to L (see 1.20). By 7.4, 

( 1)0L)-OTR L =(1() T, L 

is irreducible. By 8.2, 

(_a l(G) -a(T)RO = nGF a(- G) 
- 

RT) L)), 
hence it can be realized as an actual GF-module. 

It remains to observe that for any (T, 0) in x (not necessarily maximally 
split) we have (by (10.7.1), (10.7.2), and (6.8)): 

<PxS RTO> = (_ l)a(G)-a(T) 

44, R9> = (_ )o(G)-bX 

11. Suzuki and Ree groups 

Our methods apply also to the Suzuki and Ree groups 2B2(q), 2G2(q), 2F4(q) 
(with q an odd power of V 2, resp. V-/3, V 2). 

These groups are the fixed point set of an exceptional isogeny F': G-IG, 
with G respectively of type B2, G2 and F4, and F'2 being the Frobenius 
endomorphism relative to a rational structure over the field with q2 elements 
(R. Steinberg [15]). For the sake of induction, one should more generally 
consider groups of the form GF', with G reductive and F'2 the Frobenius. 
endomorphism relative to a rational structure over Fq2 (q an odd power of 
V 2 or V 3 ). Besides the Suzuki and Ree groups, this includes for instance 
groups of the form G = G, x G, with F'(x, y) = (Fy, x); for such a group, 
G F = GF . 

All definitions and results in Chapter 1 can be given with F replaced by 
F' throughout; in particular, for any F'-stable maximal torus T in G and 
any Borel subgroup B containing T, the subscheme XTCB of XG and the GF'_ 

equivariant TF'-torsor XTCB over XTCB are well-defined (1.17). Thus for any 
0 E (TF')I, the virtual representation R>-B of GF' is well-defined (1.20). For 
G = G1 x G1, F'(x, y) = (Fy, x), this coincides with the similar representation 
of Gf =GF 

All the results in Chapters 4, 5, 9 (except (9.18), (9.19)), the disjointness 
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Theorem 6.2 (with its Corollary 6.3), the results (7.13) and (8.2) continue to 
be true. On the other hand, the proofs of the orthogonality relations (6.8), 
(6.9), and of the dimension formula (7.1) require the assumption I TF' I > 1. 
If q > 2 this is automatically satisfied: I TF' I is of the form II (q - pi), where 
I Pi I = 1, hence I TF' I > II (q - 1). Thus, if we exclude the case where q 
equals V 2 or V 3, all the results in Chapters 6, 7, 8, 10 hold, as well as 
(9.18), (9.19). They can all be deduced from the orthogonality relations (6.8), 
(6.9). Even in the case q = V2 or 1/ 3, we can prove them for 2B2 and 2G2, 
but we cannot handle 2F(V 2) 

ADDED IN PROOF (2nd Dec. 1975). We can now handle 2F4(V- 2 ), too; this 
will be considered by one of us, in a future article. 

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES, FRANCE 
MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, ENGLAND 
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