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1. 1Introduction and statement of the result..

It is an obvious truism that mathematics evolves con-
tirnuvously in a non-linear fashion. Ve shall illustrate this
by giving two proofs of a known theorem in algebraic éeom—
etrv. This result has been discovered independently from
completely different viewpoints on at least two occasions,
anéd to -some extent our proofs reflect this circumstance.

The result concerns an algebraic curve C in projective

3-space P? = P. We assume that C does nct lie in a plane,gﬁgﬂii\ﬁca

znd shall refer to C <€ P as a space curve; that these have

interested algebraic gecireters for over & century is zttested

to by [B). When first coming to the subject, onc's initial

toervalion is thai, in contrast io the singsle delining cyua-

iion cf an arbitrary plane curve, a2 space curvoe generally

reguires more than two eqguaticns to describe it. Equivalent-
’____..---""__,_._——-'_-.-
ly, in gemecral such a curve is not the intersection cf two

smcoth surfaces S and T meeting trensversely along C.

Curves cf the form ‘C = S(ﬁTl are called coumplcte intersec--)

tions, and the —esult w2 shall discuss gives necessary and
——r SR .
csufficient cenditions that this chould be the casec.

i R

In addéition te C being’smooth'and &n

civiove necessary condition is that the decree @ should

facroy as

i

vhzre  m,n 3 72 are i1hc resvective acarces ol ¢ and 718

\

.
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-
further necessary condition is that the(?gg;gacal(g vVisor / g

shBuld be =&

L.

multiple of the hyperplane serics, or that the

eguivalent sheaf-theoretic forrulation

(1.1) 2l = 0.(x) @ olienc 1’“1‘”3“01"'
_ c " e dellesuer | oL £,4,0
: 7‘ £ Qﬁ Qe{(‘l:l_ll D‘F .1;
Fd{tuu et
should hold. 1Indeed, it follows from Q; = OP(—4) and tLhe
-~ respective adjunction formulas for § inp 7p and sn T ip

S that Qé = ‘Oc(m+n—éj- :

A thirg Necescary condition is that ceap shculd\fh\

Proiectively normal. By cdefinition this reens’that the hy-
—— =2 A0oraal

persuriaces of any decree f shouic cut cat on C a

complcte linecar S¥stem. Equivalentiy, for all { the 1ec=-

triction maps
¥

— > HO®(O (7
Ho[py(f)} > BE(e. (1))

should be surjective. Taking into account the conomoloey

sequence of

1 — = 3 f} —s £; -
C > ]C([) 3 fl_(., : EC(” >0

i
§
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projective normality is eguivalent to

~

(1.2) (£9 rdr e =0 for all° £,

where I, is the ideal shcaf of the space curve.
We should like to make a couple of observations

concerning projective normelity. The first is that complete

intersections are projectively normal, as follows from the
O Ty

cohomology seguences Of il -

4){ 0 = o tL-m) —> 0,(1) —> loger —> o

1 0 —> Dsii—nj —5 C‘S(.'i',l -> ¢.{& —C

de 8} ' s

and h'(0.(k)) = 0 for all k. The cecond is that if we

consicder the pair of graded rings

2 R = homcgeneous coordinzte ring oi CSF, and

o

]
= _E n
Lgo B0, (D))

Y

then since h¥(I (H)) =0 for £z &y it follows that R
is a module of finite type over R, wvhile R is easily seen

to be integrally closed. Since projective normality is the

came as R = R, wo deducc that this condition is equivalent

‘v pmpnl epnen, nf the Jocnl ring at

i, th A povmalid . AN
SR — o A T
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the vertex of the cone over C. "Finally, by Jocalizing at a

possibly singular point we see that any projectively normal-

space curve is first of all smooth, and secondly is irreduc-

ible. . ' i

PR

The result we shall prove is this:

|Theorem:’ A space curve is a complete intersection if,” and

only if, conditions (1.1) and (1.2) are satisfied.:

As previously mentiongd this result 1is nét new. 1t ap-
pears in the paper [G] by Guiseppe Gherardelli in 1925 with
& proof alonc classical lines, and some 25 years later an
independent and completely different approach was given by
Serre [S). The two proofs we shall give are roughly paralle?
to these. The first uses a counting argument and the
Riemann-Roch tl:eorem for the curve to estinzte the shepa of
the graph of h”(OC(L}) as a function of £, while the
second uses the interplay between codimepsion—two subvarictices

2nd rank-two vector bundles, a topic of current interest:

which was in fact initiated in [S). The purpose of this paper

is expository; it was our gcal to illustrate how one arrives
at a nice little theoreﬁ in geometry by either classical or
modern technigues, and to cffer these two approaches‘fof
conparison. |

The notations and backcround material are standard, and

may be found in  {G-1).

PP

Sty e
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;. First proof cf ‘the theorem. }

We recall that C has degree @ and that ﬂé = 0 (k).
Let m be the smallest number such that C 1lies on a sur-
face of degree m, and let S be such a surface; let n > m
be the smallést number such that € 1lies on a surface of
degree n not containing S, and let T . be such a surface.
Clearly
(2.1) . ' & <mn,
and eguzlity holds if, and only if, € =snT is a :omplete
intersection.

The idea of the proof is this: By the assunption of
projective n?rmality, we know the values h‘(OC(L)} for

£ < n-1. On the other hand, using duality

and the. Riemann-Roch gives

(2.2) h°(0C(£}) *—h'(ocik*L)} = di-g+1 .

Ve sec from (2.2) that the sccondé differences of the seguence
of numbers h”(Oclt)] has a symmetry, which when combined
with the knowledge of h’lOC(E)} for £ < n-1 and {2.13)

will yield the theorem.
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Coming to specifics, we set

1
e e s

o ont - nt .
ep = b0 (D) h*(0.(£-1))

1 Be=op- oy, ' i

. = = o o L s
{ RE(OL(8) ~ 2h°(0,(£-1)) + h®(0.(£-2))

By the assumption of projective normality, for -1 it < -1

=

[ _ 0 _ -£+3
h*(0. () = h°(0,(0)) = | 5 b
so that in this range
o (£+1) (£+2) ek
(2.3) o, = 222270 Ep = 41

Next, for m < £ < n-1

h“(GC(Z)) h‘(ﬂb(i]) - h“(OP{t—m))

£+3 -£~m+3
{3 ] 1 [ 3 )
which gives

(2.4) e, = Im -

B — —— g = a a e e e ——— T b AR - =
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Finally, from (2.2) we have

h"(oc(ll) - h“lOC{k-f.)) = dl-g+l

h‘locll—l)) - h‘(OC{k+£+11) = a(f-1)-g+l ,

and subtracting gives

=d - @

% k- L+41
i,e. from (2.3) and (2.4)
m if k-n+3 < £ ¢
= - 1 - L <
BL Bk-£+2 ¥-L£42 if k-m+3 < <
0 if k+3 < I
C

It follows from {2.2)-(2.5) that the araph of ﬁi

function of £ has the form-

25 a

EL
] ] ¥
1 1 i
. ‘ :
L] (] L]
] 1 [
v ' '
L) 1 L}
" ' ]
-1 n—1 . n=1 k-n+3 k-m+3 k+3
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In particular we see that k-m+3 2 n=1l. On the other hand,

by (2.1)
™ 2ad=a
- X+2
= z B.
i=o %

= area under graph
= (k+4)m - -m?

mn

v

since k+4 > m+n. We conclude that d=mn anéd ¢ = spno
as desired. (Q.E.D.

As an irmediate conseguence of thic result zbout

curves, we have T e

1If vcPp' s any variety of codimension 2 such that

BUEE L 000 =0 %or| 2 <i<r-2, all k
i
and
-2 _ o
Qv = Ov{L} for SO?E k.,

then V is a complete intersection.

- T R s m s 1 e e e S e 2 e b i - b g —

S —
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To see this, let € = P’ A"V be a generic 3-plane section

of V. Then

i) By successive applications of the adjunction formula,

g r-2 o
Ne R, "(r-3) c

is a multiple of the hyperplane bundle;
ii) Letting V‘j) denote an j-fold hyperplane section

of V, from.the seguences

(k)

: (k) —> 0
v(})

=i g

(1.3) 0 —> 1 ,. (k-1) —> 1 .
v(:]) v(3+1)

we see that

Hl(Pr_j.I (‘){k]} =0 for P o2dx r=2=3 5 all k
v'd i
—> plpri1 =0 for 1 <i <r-3-j, ail

’}-J(J'*l} (x))
so firally
'H’(P’.Ictk)) =0 wvk,

and C 1is projectively normal: and

iii) Again from the seqguences (1.3),

'H"(Pr’j,j (k)) ——s 1!'-‘(}?r‘j'1,1

" (x)) .
\r{J)

V(j+1)
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i.e. if sc P’ is any surface containing C. there .cxists

a hypersurface § ¢ P containing V such that § n¥’® = s,

Now, from i) and ii) it follows that C is the
complete intersection of two surfaces S and T; by iii),
then, there exists hypersurfaces S , T in ¥’ containing

V, with 5-P’ =5 and T:P’ = T. Since SNT np? is

1]

one-dimensional, S - must have codimension 2: and since

V  has degree

degV = degC deg S - deg T

deg§ -degT

it follows that V = S~
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3. Second proof of the theorem.

The argument proceeds in several steps. The idea is:

.(:) using (1.1), to associate to our space curve a rank-two

bundle E —> P together with a section s & H®(0,(E))
which defines C; ~and @E using (1.2), to show that E is

decomposable.

Step one. We consider the dats consisting of a holomorphic
line bundle L -> V over a smooth threefold andéd smooth
curve C <V, and ask when there is a pair (E,si ‘éonsist-
ing of & rank-two holomorphic vector burndle E —> V  and

section s « R%OV{E}) with divisor (s) such that

—
CJ
(]
-+
t
1]
{5

——
%)
"
a

Wow, if (E,s) exists Lhen the normal bundle NC/,"r cf C
in V is Elc » and from 0 —> : s TVIC —> NC/V - 0
we deduce the adjunction formula

{3.1) Ky = L@ X
: c Ve

We will prove that:

If (3.1) is satisfied, and if h’{Ov{L‘}} = 0, then (E,s)

exists. 1f, moreover, h‘{GV{L‘)J = 0 then E is unigue.
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Proofé_ We will use standard material on-duality and ex-
tensions, which can be found, e.g., in Chaptér V of [G-H]
whose notation we shall use. Assume first that (E,s)

exists and write | = OV(L}, E=0,(E). Since we are in

‘l’
the rank-two Case, the Koszul resolution is the short exact

seguence

(3.2) 0 — [* 5 f* -5_>.1C —> 0
vhere I is the ideal sheaf ©f C in V. The exact

Sequence (3.2) defines an element
€ e Extl(v; 1,1
&
having the following localization Prcperty: For

I each point

-
¥ € C, the class e induces

o 1 :
{3.3) ex < Exto {Ic,x' Lx) A
Since C cvy is smooth, the right hand side of (3.3) is

non—canonically‘isomorphic to OC 5+ but any two isomor-
o X

Phisms differ by a unit. The localization bproperty is +hat

e, should be a unit.
Conversely, given e ¢ Ext‘(?:lc,L') we have a short

-exact seguence (3.2) vhers f* is a coherent sheaf. -3if- -
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free of rank two, and we have our desired pair (E,s).

The long exact seguence of Ext's associated to

. D->IC—> ov-> DC—>0
gives

(3.4) ere > th‘(v;ov,L'J —> Ext’[V:IC,L') —>

—> }:xt’(v;oc,L‘) -> Ext’{v:ov.l.‘} —> e
Recall that we are assuming (3.1), which Gives
¥ 1
OC e L6 nv S}C .

the tensor product beiﬁg over Ov. Using this together

with
_ ExtS(v;o_,L*) = n9(1%
3 st . , and
{ Ext%(v; 0 t*)" = #3790 eten?)
i Cf C v L
= 3-q 1
{ = H (QC) i
the second step being duality, the segquence dual to (3.4) i
is
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(3.5) = ¢—g‘(Lﬁ'c—Ext‘{v;Jc,L')<-n‘(né)+—n’(1')'<— .-

The fundamentzl class of the curve is a canonical cenerator

for H‘(né). If h?(l®*) = 0 we deduce from (3.4) and (3.5)

the existence of a class e ¢ Ext‘{V;JC,L'l mapping onto a

generator of Extztv;oc.l'). Since Extg {OC,L']'= 0 for

%
q < 2,

H° (Ext

1

Ext’(v;t‘C,L‘J -(OC,L‘}}

2
OV

1]

©
E ((C] =
by (3.1), and we deduce that e has non-zero localizations

in the sense explained above. Also, e is clearly unigue

if HYELYY = 0.

Step twoc. We now specialize to a space curve C C P of

degree 4@ for which (1.1) is satisfied. It follows that

kd = 29-2. 1I1f we compare with (3.1), use )

[F}

OP(—Q) r

’

and let

—
1]
=
o)
—
Ay
-
-~

where

then from step one and .
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(3.6) h‘i(npun = 0 g=1,2 2nd lez

it follows that there is a unigue rank-two vector bundle
E -—> P

together with a section s ¢ H®([) such that

det E = Op(ig)

. (s) =€ .

lNow a locally free sheaf E on any projective space

is said to bc Gecomposable if

L=@® o(xy) .

Specizlizing to our rank two bundle over P?®, wc observe

that

F is decomposable if, and only if, the curve is a comnlete
¥ !

intersection. .

Indeed, if [ = 0(m) & 0(n), then the two direct sum factors
of the section s ¢ HY(L) define surfaces S and T whose
intersection is C. Ccnuerseiy, if €= SnNnT then ob-
viously € is defined by a section of the rank two bundle
0(m) @ 0(r), and by uniqueness we conclude that & 1s ae-

compesable.



P RREES ) T e

he b e et I-.-umnv. i e R B N SV PRSP PR VTS T T S P, T Ly Ll W

L i

ki e W 1 L

e R —— e e e e L S U SN P

360

Step three. Suppose now that our space curve satisfies
(1.1) and (1.2). By the second step we must show that the.
vector bundle E —> P is decomposable. From (3.2) and

the exact cohumology sequence of

0 —> L*(L) —> E*(L) — 1,00 >0
together with (3.6), we deduce that
hl(E*(L)) = 0

for al1 L. Using E 'S E*Gget © = E*(L,) =and duality,

this condition is eguivalent to

(3.7) h(E()) =0 g=1,2 and fc 2

1t is a theorem cf Horrocks [lI}) «+hat vnder the condition

(3.7) the vector bundle is deconpesable (Horrocks' theorem

.

is for bundles of any rank over arbitrary projective spaces]).

We shall give 3 proof of his theorem in our case.
For this recall that, for any line L ¢ P the res-
triction EL =E 6 OL of E to the line is uniquely

decomposable

{BfB) EL = 0(m) & O(n).

In general, the integers m and n depend on the line and
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the bundle is said to be uniform in case they are the same

for all lines. It is a theorem of Van de Ven [V] that

A uniform vector bundle is decomposable.

-

Here is his argument. It will suffice to show that there

is an extension

(3.9} 0 —->S5 —>E—-—>0-—>0

where S ané Q are line bundles. ‘Indeed,‘it follows
first that S = 0(m) and Q = 0(n), and then the extension
splits by (3.6). FEix a'point p ¢ P’ and consider the

P; of lines passinc through p. On any such line we have

a unique decomposition (3.6). Suppose first that m < n.

Then for any point g ¥ p we may dzfine the subspace

W

S5, < Eq by taking the decompositicn (3.8) on tne iine p

and letting S_ be the fibre of ¢im) at that point.
This is possible since any automorphism of €(m) @ 0(n)
fixes O(m). It remains to uniquely determine the subspace
S ¢ E . Letting P! be the lines in E_ = c?, we may

P P - p

define a holomorphic map

{: pr’) —> p!

by letting f£(L) be the fibrec of 9J(m) at p for the

Geccuposition (3.6). Such a map is constant, since other-
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wise fﬁltoJ (3] fhl(w) would ‘give a non-empty set of points

where f is not defined. This uniquely determinecs

Sp c Ep and gives the desired extension (3.9) in case

m<n. When .m = n we may uniquely determine sq c E as

“before by reguiring that O(m}p should be a5 fixed line in

Ep: this gives the extension (3.9) in this case.

To complete the proof of our main theorem it remzins to

prove that

If E -—> P sgatisfies {3.7), then E is uniform.

Proof. For any line L - we consider a plane P? with

L ©¢P? ¢ P’. f7ogether with (3.7) the exact cohomology se-
gucrnces of

T

0 => Epall-d) = Epsl8) —> Eu2(d) —> 6
0 — Ep,(f~1) => £5208) —> L) —> o0
imp1§ first that h1(EP;{£}}= 0 for all £, and then that
] U &
H [EP{IJ} =5 H (ELtt): >0
is surjective for all £f. Ac a consequence, for any integer

L, éim H°(EL(£)) is a constant independent of the line L.

We shall cshow that this implies the uniformity of E.
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Indeed, by tensoring with a 5uita£1e_ 0(L) "we may

assume that ©On a generic line either

(2]
"

0&0(-a) (@ > p), .

or else

in

E

L 0(-1) &0(-1).

Suppose now that L Specializes to a line L,. Then by

UPPEI‘Semi-Continuity ho(r M 3 il"{fL), and in the first

a -
=

O(e) 8 0(-d-e) (e 20). 1f

Ny s

Case we can only have ELn
€ > 0, then h‘(ELnJ > p“(ELJ. Similarlyv, in the second
C€ase we can only have ELo = 0le-1) 8 0(-e-1) (e > 0), ang
if e >0 then h°(£LL} > h”(EL]. We conclude thas f is

uniform, and hence that ¢ jg 4 complete intersection. e.E.D.
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