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A Single Coupling Constant

The gravitational N -body problem can be defined as the challenge to
understand the motion of N point masses, acted upon by their mutual
gravitational forces (Eq.[1.1]). From the physical point of view a fun-
damental feature of these equations is the presence of only one coupling
constant: the constant of gravitation, G = 6.67 × 10−8 cm3 g−1 sec−2

(see Seife 2000 for recent measurements). It is even possible to remove
this altogether by making a choice of units in which G = 1. Matters
would be more complicated if there existed some length scale at which
the gravitational interaction departed from the inverse square dependence
on distance. Despite continuing efforts, no such behaviour has been found
(Schwarzschild 2000).

The fact that a self-gravitating system of point masses is governed
by a law with only one coupling constant (or none, after scaling) has
important consequences. In contrast to most macroscopic systems, there
is no decoupling of scales. We do not have at our disposal separate
dials that can be set in order to study the behaviour of local and global
aspects separately. As a consequence, the only real freedom we have,
when modeling a self-gravitating system of point masses, is our choice of
the value of the dimensionless number N , the number of particles in the
system.

As we will see, the value of N determines a large number of seemingly
independent characteristics of the system: its granularity and thereby its
speed of internal heat transport and evolution; the size of the central
region of highest density after the system settles down in an asymptotic
state; the nature of the oscillations that may occur in this central region;
and to a surprisingly weak extent the rate of exponential divergence of
nearby trajectories in the system. The significance of the value of N is
underlined by the fact that N often makes its appearance in the very
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16 2 Theoretical Physics Introduction

names of the problems we study, e.g. the famous “three-body problem”,
and in the titles of books like this one.

N = 2, 3

The three-body problem is so famous precisely because it is one of the
oldest problems that cannot be solved. In contrast, the two-body problem
is one of the oldest solved problems. It was Newton’s great triumph
that he was able to explain why planets move in elliptical orbits around
the sun, as had been discovered earlier by the brilliant Kepler, using
observational data by Tycho Brahe. The significance of Newton’s solution
can hardly be overestimated, since the result was a breaching of the
seemingly separated realms of the temporal, human, sub-lunar world and
the eternal world beyond the Moon’s orb.

Though Newton had shown how to solve the two-body problem, the
presence of even an infinitesimal third body (the so-called “restricted”
three-body problem) is insoluble in the usual sense.∗ We should not
forget, however, that Newton was able to solve some three-body problems
approximately. He knew, for instance, that it is better to treat a planet as
revolving around the barycentre of the inner solar system than about the
sun itself. If we do not insist on a precise solution, as with the two-body
problem, in other words, if we look at it from the point of view of physics
rather than mathematics, as Newton did, many aspects of the behaviour
of the three-body problem are not so hard to understand. Indeed it is one
of the quiet triumphs of recent decades that our intuitive understanding
of three-body motions has developed to the extent it has. Most physics
undergraduates are still exposed to the two-body problem, and can easily
develop a feel for the motion in ellipses and hyperbolae, especially when
the scattering problems of atomic physics are encountered. We think that
it is possible to arrive at a similar feel for the richer behaviour of three-
body systems, and one of our aims in writing this book is to demonstrate
this.

The mathematical development of the three-body problem continued
in the hands of Euler, Lagrange, Laplace and many others, who system-
atised the methods of approximate solution. These led to the remarkable
and successful development of the theory of planetary motion; the suc-
cesses of the recovery of Ceres and the discovery of Neptune; and the
familiar but no less remarkable ability of astronomers to predict the mo-

∗ As an aside, it is amusing to see the progress of physics reflected in our (in)ability to
solve N-body problems. In Newtonian gravity we cannot solve the 3-body problem.
In general relativity we cannot solve the 2-body problem. In quantum electrody-
namics we cannot solve the 1-body problem. And in quantum chromodynamics we
cannot even solve the 0-body problem, the vacuum.
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tions of the planets, satellites, asteroids, and comets. Equally, they led to
profound insights in the emerging fields of dynamical systems and chaos
(Chapter 4), which in turn have illuminated our understanding of N -
body problems. But they also led away from the sort of approach we
need if our goal is to find quantitative answers to questions about the
million-body problem.

N → ∞

Throughout classical physics there are several important analogues to
the million-body problem, and it is from this background, and not so
much from celestial mechanics, that the most fruitful approaches have
come. At first sight the closest analogy is with plasma physics, where
inverse square laws, as in Eq.(1.1), also arise, but the analogy has not
proved as fruitful as one might think.

In the first place plasmas are often nearly neutral, and for this reason
it makes sense to conceive of plasmas which are nearly uniform, nearly at
rest and of large spatial extent. By contrast, it is impossible to conceive
of an infinite uniform gravitational medium in equilibrium (Fig.1). New-
ton himself glimpsed this problem, and solved it by noting that the stars
had been placed at immense distances from each other, lest they should,
“by their gravity, fall on each other”. This was a satisfactory solution
if one supposed that the system of fixed stars were young enough. For
stellar systems the modern solution is that the random motions or circu-
lation of the stars maintain dynamic equilibrium, just as the motions of
the planets prevent their falling into the sun. Even so, we shall see that
the contraction of stellar systems in dynamic quasi-equilibrium is a real
and fascinating issue, though it is a much gentler process than the head-
long rush suggested by the phrase “gravitational collapse”. In problems
of cosmology, Newton’s dilemma is avoided by an overall expansion or
contraction of the entire universe, though a general relativistic treatment
is required.

The second basic feature of an infinite plasma is that several impor-
tant effects are localised within a Debye length, beyond which the rear-
rangement of charges effectively screens off the influence of an individual
charge (see, for example, Sturrock 1994). If one naively computes the
Debye length for a stellar system, it is found usually to be of the order of
the size of the system itself (Problem 2). Thus it is difficult to treat grav-
itational interactions as being localised within a stellar system, though it
is a difficulty that stellar dynamicists habitually ignore. In any event, all
these considerations help to explain why many of the well known proper-
ties of plasmas have little relevance to stellar systems. And yet there is
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Fig. 1. Collapse of a uniform “cold” sphere. Initially 2048 particles are dis-
tributed randomly within a sphere. In units such that G = 1, the initial radius
is 2.4, the total mass is 1, and successive frames are taken at intervals of 2

√
2/5

(cf. Box 1.1). Late in the collapse (frame 7 and 8) the distribution of particles
has becomes very irregular. In frame 9 the particles which arrived first have be-
gun to reexpand. By the last row of frames the remaining central condensation
has settled nearly into dynamical equilibrium.

one phrase that stellar dynamicists use all the time which betrays their
debt to plasma physics: the words “Coulomb logarithm”, which occur in
the theory of relaxation (Chapter 14).

Thermodynamics

The plasma analogy exploits the form of the force equation but not
the size of N . Physicists routinely study problems which great numbers
of particles using concepts of thermodynamics. How fruitful is such an
approach to the million-body problem?

From a formal point of view, unfortunately, the field of thermodynamics
excludes a description of self-gravitating systems. The reason is that
the existence of gravitational long-range forces violates the notion of an
asymptotic thermodynamic limit in which physical quantities are either
intensive or extensive. Gravity exhibits what is known in particle physics



Thermodynamics 19

as an infra-red divergence. This means that the effect of long-distance
interactions cannot be neglected, even though gravitational forces fall off
with the inverse square of the distance (Problem 3).

Take a large box containing a homogeneous swarm of stars. Now en-
large the box, keeping the density and temperature of the star distribu-
tion constant. The total mass M of the stars will then scale with the
size R of the box as M ∝ R3, and the total kinetic energy Ekin will
simply scale with the mass: Ekin ∝M . The total potential energy Epot,
however, will grow faster: Epot ∝M2/R ∝M5/3. Unlike intensive ther-
modynamic variables that stay constant when we enlarge the system, and
unlike extensive variables that grow linearly with the mass of the system,
Epot is a superextensive variable, growing faster than linear.

As a consequence, the specific gravitational potential energy of the
system, the total potential energy of the system divided by the particle
number N , grows without bounds when we increase N . This causes vari-
ous problems. For example, the kinetic energy of a stable self-gravitating
system is directly related to the gravitational potential energy through
the so-called virial theorem (Chapter 9). Therefore, we have to make a
choice when enlarging a self-gravitating system. Either we increase the
temperature steadily while increasing N , in order to increase the specific
kinetic energy enough to satisfy the virial theorem and guarantee sta-
bility. Or we keep the temperature constant, and quickly lose stability
when enlarging our system. In the latter case, the system will ‘curdle’: it
will fall apart in more and more subclumps, and the original homogeneity
will be lost quickly.

In conclusion, there is no way that we can reach an asymptotic ther-
modynamic limit, with the system size becoming arbitrarily large while
holding the intensive variables fixed∗. Therefore, the traditional road to
equilibrium thermodynamics is blocked. There are no arbitrarily large
homogeneous distributions of stars. As soon as the Universe became old
and cold enough to let matter condense out of the original fire ball into
‘islands’ in the form of galaxy clusters and galaxies, the original homo-
geneity was lost. And each individual clump of self-gravitating material,
be it a galaxy or a star cluster, is ultimately unstable against evapora-
tion, and will fall apart into a bunch of escaping particles (Fig.2). Most
of these escapers will be single, some will escape as stable pairs, and a
few will even manage to form stable triples or higher-number multiples
of particles.

∗ A consistent theory is possible if we let R→∞ with N/R fixed (de Vega & S’anchez
2000), though what relevance this might have to the million-body problem is unclear
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The presence of these few-body systems is a robust feature of N -body
systems, as we shall see throughout this book. From our present perspec-
tive, it is an indication of another problem: a short-range (“ultra-violet”)
divergence. The usual Boltzmann factor used in calculations of canonical
ensemble averages, i.e. exp(−E/kT ), gives divergent results in the limit
when two particles approach each other within a small distance r. This

factor then contains a term exp

(
Gm2

rkT

)
.

A Lack of Handles

Even though we cannot use thermodynamics in a formal way, when
dealing with a star cluster, we can still describe the motion of the stars
in a way that is analogous to the treatment of the motion of molecules in
a gas studied in a laboratory. One important difference is that a swarm
of stars forms an open system, while a body of gas in a lab has to be
contained. Typical textbook experiments in thermodynamics show the
gas to reside inside a cylinder, with a movable piston that allows the
experimenter to change the volume of the gas. In a star cluster, there are
no cylinder and piston. Instead, the stars are confined by their collective
gravitational field.

The structural simplicity of a star cluster thus allows far less experi-
mentation than is the case for a body of gas in a lab situation. Whether in
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Fig. 2. Escape from an N -body system. This computer model of a star cluster
shows a thin stream of escapers emerging at the left and right. The escapers
are channeled into these streams because of external forces, and the streams are
curved because of Coriolis forces.
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thought experiments, computer simulations, or in actual table top exper-
iments, the macroscopic parameters of a laboratory gas can be changed
freely, independent of the microscopic parameters governing the attrac-
tion and repulsion between individual molecules. Temperature, density,
and size of the system all can be varied at will. In contrast, once the
number of particles in a self-gravitating system has been chosen, we are
left with no degree of freedom at all, apart from trivial scalings in the
choice of unit of length, time, and mass.

The fact that there are no dials that can be turned in a self-gravitating
experiment, apart from the choice of the total number of stars, is directly
related to the ultra-violet and infra-red divergences of classical gravity.
Having a simple shape for the gravitational potential energy well, with
an energy inversely proportional to distance, leaves no room for preferred
length scales. In contrast, molecular interactions show far more compli-
cated forces, typically strongly repulsive at shorter distances and weakly
attractive at larger separations between the molecules. This change in be-
haviour automatically specifies particular length scales, for example the
distance at which repulsion changes into attraction. In contrast, gravity is
attractive everywhere, at least in the classical Newtonian approximation.

Towards an understanding of the million-body problem

It is now being realised that the gravitationalN -body problem is just one
of a growing list of known systems with long-range interactions where the
non-extensivity of energy looks like an obstacle (Cipriani & Pettini 2001).
(In other contexts these are known as “small systems”, to indicate that
their spatial extent is comparable with the range of the relevant interac-
tion.) It turns out that non-extensivity is only an issue if we insist on
treating these problems with the traditional tools of canonical ensembles
(corresponding to systems immersed in a heat bath). This hardly seems
natural in the stellar dynamical context. It is the microcanonical ensem-
ble which corresponds best to the isolated N -body systems which have
been studied so much in stellar dynamics. Indeed it is known that the
different ensembles one studies in thermodynamics, and which are usually
regarded as equivalent for many purposes, have very different properties
for self-gravitating systems (see, for example, Youngkins & Miller 2000).

The formal inability to apply traditional thermodynamic concepts,
then, does not seriously hinder us from thinking and working with them.
Gravity is just as important in the theory of stellar structure and evolu-
tion, where thermodynamics is just as much the stock-in-trade as in any
other area of gas dynamics. Indeed it was precisely the search for extrema
of the entropy of stellar systems that led V.A. Antonov (Antonov 1962)
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to one of the most profound insights into the behaviour of stellar systems
– gravothermal stability.

In addition to fundamental approaches like this, there are several other
routes by which the behaviour of N -body systems are explored (Chapter
9). One can construct toy models, one can borrow models from other
areas (such as the theory of stellar evolution, or the kinetic theory of
gases), and these can be studied analytically or by numerical methods.
Finally, simulations may be based, with the minimum of simplifying as-
sumptions, on the numerical integration of Eqs.(1.1). As a result of all
these types of approaches, over the last few decades we have developed
a relatively deep and accurate understanding of the many subtle aspects
of the evolution of a system of gravitating point masses, the topic of this
book. Indeed the study of the gravitational N -body problem must rank
as one of those mature areas of research where the variety of approaches
enrich each other like a community of craftsmen.

Let us highlight a few points of interest for a general physics point of
view.

Perhaps the most fascinating aspect of self-gravitating systems is their
instability∗, exemplified by the fact that these systems have a negative
heat capacity (Chapter 5). Thermodynamic purists would shudder, but
the idea is intuitively simple to grasp and very powerful. Removing heat
from a system means reducing its kinetic energy of random motions. If
this is done to a self-gravitating system, its constituents fall towards each
other a little, and in doing so actually pick up more kinetic energy than
they lost in the first place. When this concept is applied to part of a
stellar system (as it easily can be in thought experiments) an instability
can result. Imagine what might happen to a block of material with a
negative specific heat, as heat flows from a hot spot: the more heat it
would lose, the hotter it would get, and it would quickly burst into flame.

Next, the N -body problem is a fascinating example of a system for
which no useful equilibrium exists. Particles can and do escape (Fig.2).
A Maxwellian distribution of velocities would always allow particles of
arbitrarily high speed, but in self-gravitating systems there is a finite es-
cape speed. Therefore the notion of “local thermodynamic equilibrium”,
which is such a powerful idea in many areas, has limited usefulness. Even
if we prevent particles from escaping (in a thought experiment), ther-
modynamic equilibrium is possible, but may be unstable (because of the
negative specific heat). There is certainly no equilibrium in the sense of
solutions of Eqs.(1.1) in which all particles are at rest. Even the con-

∗ We exclude N = 2, and certain kinds of stable larger systems, e.g. hierarchical
triples (Chapter 25)
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cept of dynamic equilibrium (if we ignore for a moment the escape of
particles) brings with it the difficulty of showing why such equilibria are
stable. This in turn depends on an understanding of the global modes
of oscillation of a system in dynamic equilibrium, and for stellar systems
like globular clusters this area is still in its infancy, despite a great deal
of work by many experts. One of the obstacles, of course, is the severe
spatial inhomogeneity of gravitating systems.

The N -body problem exemplifies some of the most perplexing issues
in statistical mechanics. Even though the equations of motion are re-
versible, particles escape and are never captured. A stellar system with
a collapsing core (Chapter 17) will collapse, even if the velocities are re-
versed. In every reasonable sense it is a chaotic system, which rapidly
forgets its initial conditions, and collisions can almost always be treated
with Boltzmann’s classic “Stosszahlansatz”. The fact that there are ex-
ceptions, e.g. the mutual interaction of stellar orbits in the dominating
field of a central black hole (Rauch & Tremaine 1996), is an avenue (so
far unexplored) for investigating the foundations and limitations of the
stochastic treatment of collisions.

Problems

1) How would Newton have solved the problem of the collapse of the
system of fixed stars if he had had access to a GRAPE∗?

2) In plasma physics the Debye length is defined to be

λD =

√
kTe

4πe2Ne
.

Translate this into the language of stellar dynamics, bearing in mind
that the rms speed of electrons is related to the electron temperature
by

vTe =

√
3kTe
me

.

If a stellar system is in dynamic equilibrium then it approximately
obeys the virial relation 2T +W = 0, where T is now the total kinetic
energy and W the total potential energy (Chapter 9). By making
suitable estimates for the density and other parameters of the system,
show that its radius is comparable with the Debye length.

3) Newton’s Theorems on the gravitational force due to a uniform spher-
ical shell imply that the force inside vanishes, and the force outside
is the same as that due to an equal point mass at the centre of the

∗ instead of an Apple
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shell. Hence show that the force at a point due to an infinite uniform
medium can take any value we please.

4) Using Newton’s Theorems (Problem 3) show that the acceleration of
a point at a distance r from the centre of a uniform sphere of finite
radius a and total mass M is

r̈ = −GMr

a3
.

Deduce that the sphere collapses homologously, and that collapse is
complete at time

t =

√
π2a3

0

8GM
,

where a0 is the initial value. Compute this for the system displayed
in Fig.1.


