
3
Computational

Physics Introduction

Following the evolution of a star cluster is among the most compute-
intensive and delicate problems in science, let alone stellar dynamics. The
main challenges are to deal with the extreme discrepancy of length- and
time-scales, the need to resolve the very small deviations from thermal
equilibrium that drive the evolution of the system, and the shear number
of computations involved. Though numerical algorithms of many kinds
are used, this is not an exercise in numerical analysis: the choice of al-
gorithm and accuracy are dictated by the need to simulate the physics
faithfully rather than to solve the equations of motion as exactly as pos-
sible.

Length/time-scale problem

Simultaneous close encounters between three or more stars have to be
modeled accurately, since they determine the exchange of energy and
angular momentum between internal and external degrees of freedom
(Chapter 23). Especially the energy flow is important, since the genera-
tion of energy by double stars provides the heat input needed to drive the
evolution of the whole system, at least in its later stages (Chapter 27f).
Unfortunately, the size of the stars is a factor 109 smaller than the size of
a typical star cluster. If neutron stars are taken into account, the prob-
lem is worse, and we have a factor of 1014 instead, for the discrepancy in
length scales.

The time scales involved are even worse, a close passage between two
stars taking place on a time scale of hours for normal stars, milliseconds
for neutron stars (Table 1). In contrast, the time scale on which star
clusters evolve can be as long as the age of the universe, of order ten

25



26 3 Computational Physics Introduction

Table 1. Time Scales of the Million-Body Problem

Time Scale Stellar Dynamics Stellar Evolution Human Evolution

Seconds White dwarf collision Formation of neutron star Heartbeat
Years Hard/soft binary period1 Long-period variable Malt whisky
Myrs Crossing time2 Shortest stellar lifetime Human evolution
Gyrs Relaxation time3 Lifetime of the sun Life on Earth
1 Chapter 19; 2 Chapter 1; 3 Chapter 14

billion years, giving a discrepancy of time scales of a factor 1014 for normal
stars, and 1020 for neutron stars.

indextime scales
Sophisticated algorithms have been developed over the years to deal

with these problems, using individual time step schemes, local coordinate
patches, and even the introduction of mappings into four dimensions in
order to regularize the 3-D Kepler problem (through a Hopf map to a 4-D
harmonic oscillator, cf. Chapter 15). While these algorithms have been
crucial to make the problem tractable, they are still very time-consuming.

Near-equilibrium problem

In the central regions of a star cluster, the two-body relaxation time scale,
which determines the rate at which energy can be conducted
through the system, can be far shorter than the time scale of evolution for
the system as a whole, by several orders of magnitude. For example, in
globular clusters, density contrasts between the centre and the half-mass
radius can easily be as large as 104, which implies a similar discrepancy
in relaxation time scales.

As a consequence, thermal equilibrium is maintained to a very high
degree. Since it is precisely the deviation from thermal equilibrium that
drives the evolution of the system (Chapter 2), it is extremely difficult to
cut corners in the calculation of close encounters. If any systematic type
of error would slip in here, even at the level of, say, 10−6, the result could
easily invalidate the whole calculation. It is for this reason that none of
the recently developed fast methods for approximate force calculations
has been adopted in this area, e.g. tree codes, P3M codes, etc (Barnes
& Hut 1986, Greengard 1990, Efstathiou et al. 1985). All such methods
gain speed at the expense of relatively large errors in the force computa-
tion. The result is that the N -body simulations of stellar dynamics can
boast far fewer particles than in, say cosmological simulations. This is a
pity, because N is often used as a crude “figure of merit” in the art of
simulation, whereas what really matters is the value of the science that
comes out.



Computational requirements 27

Computational requirements

The cpu cost of a directN -body calculation scales∝ N3, where the inter-
particle forces contribute two powers in N (Problem 1) and the increased
time scale for heat conduction contributes the third factor of N . For
this reason the progress of N -body simulations of star clusters has been
painfully slow, from the earliest published work of S. von Hoerner in 1960
(Fig.1).

Almost none of this progress has been made by large general-purpose
supercomputers. The use of parallel computers, such as Cray-T3E, has
had less impact on this area than on many others, because of the com-
munication bottleneck. The force on each particle necessarily depends
on the position of every other, and therefore it is not usually efficient to
parallelise the force calculations (which are the main bottleneck in serial
codes). Another way of exploiting parallelism is to advance many parti-
cles simultaneously (Spurzem & Baumgardt 2001). While this works well
in simple cases, the enormous range of time scales can ruin the efficiency
of this approach also: individual time steps were introduced precisely so

10

100

1000

10000

100000

1960 1965 1970 1975 1980 1985 1990 1995 2000

N

Date

von Hoerner

Terlevich

Inagaki

Aarseth & Heggie
Spurzem & Aarseth

Makino

?Makino

Aarseth

Fig. 1. The slow progress of N -body simulations of star clusters. Models com-
puted well into the late evolution are plotted against publication date. For a
human perspective, see Aarseth (1999) and von Hoerner (2001).



28 3 Computational Physics Introduction

that it should not be necessary to advance all particles with the tiny time
step required for one close binary!

Currently, with routine calculations, it is only feasible to model the
evolution of a globular cluster containing a few thousand stars, since this
requires some 1015 floating point calculations, equivalent to 10 Gflops-
day, or several months to a year on a typical workstation. Therefore, a
calculation with half a million stars, resembling a typical globular star
cluster, will require ∼ 10 Pflops-day.

In contrast, the memory requirements are and will remain very modest.
All that is needed is to keep track of N = 5 × 105 particles, each with
a mass, position, velocity, and a few higher derivatives for higher-order
integration algorithms. Adding a few extra diagnostics per particle still
will keep the total number of words per particle to about 25 or so. With
200 bytes per particle, the total memory requirement will be a mere 100
Mbytes.

Output requirements will not be severe either. A snapshot of the po-
sitions and velocities of all particles will only take 10 Mbytes. With, say,
105 snapshot outputs for a run, the total run worth 10 Pflops-day will
result in an output of only 1 Tbyte.

Special-purpose Hardware

While general-purpose supercomputers have not yet made much impact
in this field, from time to time it has attracted attention as a possible
application of special-purpose hardware (Fukushige et al. 1999). The
earliest idea along these lines was put into practice by Holmberg as long
ago as 1941 (Holmberg 1941; see also Tremaine 1981). He arranged a
set of light bulbs like the stars in a stellar system, and used photometers
to determine the illumination at each. Since light also obeys an inverse
square law, this provided an analogue estimate of the gravitational field.

The next step in astronomy took place not in stellar dynamics but
in celestial mechanics, with the building and development of the Digital
Orrery (Applegate et al. 1985). For several years it performed ground-
breaking calculations on the stability of the solar system, including the
discovery of chaos in the motion of Pluto (Sussman & Wisdom 1988), until
eventually being regretfully laid to rest in the Smithsonian Museum.

A significant step toward the modeling of globular star clusters was
made in 1995 with the completion of a special-purpose piece of hard-
ware, the GRAPE-4, by an ingenious group of astrophysicists at Tokyo
University (Makino & Taiji 1998). GRAPE, short for GRAvity PipE,
is the name of a family of pipeline processors that contain chips spe-
cially designed to calculate the Newtonian gravitational force between
particles. A GRAPE processor operates in cooperation with a general-



Special-purpose Hardware 29

purpose host computer, typically a normal workstation. Just as a floating
point accelerator can improve the floating point speed of a personal com-
puter, without any need to modify the software on that computer, so the
GRAPE chips act as a form of Newtonian accelerator (Box 1).

The force integration and particle pushing are all done on the host
computer, and only the inter-particle force calculations are done on the
GRAPE. Since the latter require a computer power that scales with N2,
while the former only require power ∝ N , load balance can always be
achieved by choosing N values large enough.

For example, the complete GRAPE-4 configuration, with a speed of
more than 1 Tflops, could be efficiently driven by a workstation of 100
Mflops. Although such a workstation operates at a speed that is lower
than that of the GRAPE by a factor of 104, load balance could be achieved
for particle numbers of order N ∼ 5 × 105. In practice, even with this
hardware, routine calculations did not greatly exceed a particle number
of about 104, since much larger simulations could not be completed in less
than a few months, and it has been found scientifically more productive
to compute large numbers of relatively modest simulations rather than
to break records. (Note, by the way, that the extreme parallelism of

Fig. 2. The Grape-6 at the University of Tokyo, with J. Makino (right). With
permission.



30 3 Computational Physics Introduction

Box 1. GRAPE design

The design of a typical GRAPE chip (Fig.1) reflects the N -body equa-
tions (Eq.(1.1)). The position and mass of an attracting particle (index
j) are read from memory, the difference r = ri − rj is computed, then
r2, then r3, and finally one term on the right of the equations of motion.
Contributions from all attracting particles are summed. One reason for
the efficiency of GRAPE is the fact that, because of the “pipelined” de-
sign, one contribution is computed for each clock cycle. On a conventional
computer each arithmetic operation usually requires several clock cycles,
and each contribution requires about 30 such operations.

Fig. 1 Schematic of a GRAPE-3 chip (from Okumura et al. 1993).
This and other versions of the GRAPE chips perform a few other in-

tensive calculations at the same time. Also, several chips or pipelines are
installed, along with control hardware and memory for the particle data,
on one board, rather like the mother board of a conventional PC. This
board communicates with the host computer via a cable and an inter-
face board, such as a PCI card. In larger installations, several GRAPE
boards are arranged in a tree with suitable communications interfaces to
the single host computer.

In order to make use of an installed GRAPE, sections of a simulation
program are replaced by calls to software libraries which have been writ-
ten by the GRAPE team in Tokyo. For example, computation of forces
(and potential) on all n particles on the now-obsolete GRAPE-3 with 8
chips was computed as follows, using the library function g3frc:

the GRAPE does not allow the most efficient scalar algorithm to be
implemented.) In addition, cut-down versions of this computer can be



Special-purpose Hardware 31

Box 1 (continued)
do 119 i=1,n,8

ii = 8
if(i+ii .gt. n+1) ii = n- i + 1
call g3frc(x(1,i),awork,pwork,ii)
do 1198 j = 1,ii

do 1197 k = 1,3
f(k,i+j-1)=awork(k,j)

1197 continue
pot(i+j-1) = pwork(j) + mass(i+j-1)*epsinv

1198 continue
119 continue

The particle data are loaded beforehand with similar instructions.

and have been used for simulations in a wide range of other problems
in astrophysics (Hut & Makino 1999) and, indeed, other fields of science,
such as plasma physics, molecular dynamics, the study of turbulence, and
even protein folding.

There are several reasons for GRAPE’s success. In the first place it was
developed quickly, always keeping ahead of general-purpose computers.
Secondly, the mathematical model of inverse square laws is quite fixed,
and can be “hard-wired”. Thirdly, the GRAPE group ensured that the
devices could be made available to potential users throughout the world,
and this maximised the scientific returns.

The introduction of special-purpose hardware has been a truly revolu-
tionary advance, and not just in speed. Before GRAPE and its prede-
cessor, the Digital Orrery, the hardware used by theorists was bought off
the shelf from a computer dealer. By contrast observers have always built
their own hardware (or have had it built to their own specification), even
back to the time of Galileo. From this perspective, GRAPE represents
a remarkable culture shift in the way theorists can do science. In retro-
spect it is not surprising that it is in the area of dynamical astronomy
that this has happened, as it is here that the governing equations and the
underlying physical model are most stable. And we are not yet at the
end of the road: GRAPE 5 is already at work (Kawai et al. 2000) and, as
we write, GRAPE 6 is coming on stream (Fig.2). It is about 100 times
faster than GRAPE 4.



32 3 Computational Physics Introduction

Software Environments

Generating data is only half the job in any simulation. The other half
of the work of a computational theorist parallels that of an observer, and
lies in the job of data reduction. As in the observational case, here too
a good set of tools is essential. And not only that: unless the tools can
be used in a flexible and coherent software environment, their usefulness
will still be limited.

Three requirements are central in handling the data flow from a full-
scale star cluster simulation: modularity, flexibility, and compatibility.
For example, to set up a major simulation, it is very useful to have a set
of model building tools that are sufficiently modular, so that they can be
combined in many different ways. If the data representation is flexible
enough, it will be possible to add new physical variables whose use may
not have been foreseen at the time that the software package was first
developed. And in order for those new variables not to interfere with
existing programs, compatibility is a vital issue as well.

The two main specially constructed environments in use are called
Nemo and starlab (Box 2). Both consist of large collections of software
and tools satisfying the above requirements. In addition a great deal of
N -body work is carried out in the unix-type environments used univer-
sally by computational scientists. The principal codes used in this way
are the suite of N -body programmes written by S.J. Aarseth (1985). An
extremely simplified N -body code is provided in Appendix A.

Problems

1) Use either N -body code in Appendix A to investigate how the CPU
time depends on the number of particles. Try to explain the depen-
dence you find.

2) Code the N -body equations (Eq.(1.1)) using a Runge-Kutta solver,
either one specially prepared for the purpose, or one drawn from any
available numerical library, such as Press et al. (1992). Try to ensure
that the accuracy (judged, for example, by energy conservation) is
comparable with that in Appendix A. Compare the timing with that
of Problem 1, and explain the difference.

3) Code the N -body equations in a symbolic computation package, such
as Maple or Mathematica. Compare the timing with that in Problem
2, again with comparable accuracy, and explain the difference.



Software Environments 33

Box 2. Starlab

Starlab is a software package for simulating the evolution of dense stel-
lar systems and analyzing the resultant data. It is a collection of loosely
coupled programs (“tools”) linked at the level of the UNIX operating
system. The tools share a common data structure and can be combined
in arbitrarily complex ways to study the dynamics of star clusters and
galactic nuclei.

Starlab features the following basic modules:

• Three- and four-body automated scattering packages, constructed
around a time-symmetrized Hermite integration scheme.

• A collection of initialization and analysis routines for use with general
N -body systems.

• A general Kepler package for manipulation of two-body orbits.
• N -body integrators incorporating both 2nd-order leapfrog and 4th-

order Hermite integration algorithms.
• Kira, a general N -body integrator incorporating recursive coordinate

transformations, allowing uniform treatment of hierarchical systems of
arbitrary complexity within a general N -body framework.

In addition, starlab enables the use of stellar evolution packages such
as SeBa, which models the evolution of any star or binary from arbitrary
starting conditions.

A novel aspect of Starlab is its very flexible external data represen-
tation, which guarantees that tools can be combined in arbitrary ways,
without loss of data or internally-generated comments. Thus, two tools
connected by UNIX pipes may operate on different portions of the same
data set, even though neither understands the data structures, or even the
physical variables, used by the other. Unknown data are simply passed
through unchanged to the next tool in the chain.

Individual Starlab modules may be linked in the “traditional” way, as
function calls to C++ (the language in which most of the package is
written), C, or FORTRAN routines, or at a much higher level–as indi-
vidual programs connected by UNIX pipes. The former linkage is more
efficient, and allows finer control of the package’s capabilities; however,
the latter provides a quick and compact way of running test simulations
and managing production runs. The combination affords great flexibil-
ity to Starlab, allowing it to be used by both the novice and the expert
programmer with equal ease.



34 3 Computational Physics Introduction

Box 2 (continued)
To some extent, Starlab is modeled on NEMO, a stellar dynamics soft-

ware environment developed during the 1980s at the Institute for Ad-
vanced Study, Princeton, in large part by Josh Barnes, with input from
Peter Teuben and Piet Hut (and subsequently maintained and extended
by Peter Teuben). Starlab differs from NEMO mainly in its use of UNIX
pipes, rather than temporary files, its use of tree structures rather than ar-
rays to representN -body systems, and its guarantee of data conservation–
data which are not understood by a given module are simply passed on
to the next rather than filtered out and lost. The original version of
Starlab was written by Piet Hut in 1989, while on sabbatical at Tokyo
University. From 1993 onwards, Steve McMillan has extended starlab,
with help from Piet Hut, Jun Makino, Simon Portegies Zwart and Peter
Teuben. Visualisation tools, such as partiview, have been added by Stu-
art Levy. Nemo, starlab and partiview are all available at the web site
<http://www.manybody.org>.

Recently, the concept of a ‘virtual observatory’ has been the topic of
several workshops and conferences. The idea is to connect the major
observational archives, from radio to optical to X-ray observations, to
make available a ‘digital sky’ online. Archives of large-scale simulations,
such as those provided by Starlab, will be connected with those virtual
observatories as well, facilitating comparisons between observations and
simulations (Teuben et al. 2001).


