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Mathematical Introduction

For the mathematician, the gravitational N -body problem is the prob-
lem of understanding by pure thought the solutions of the set of differ-
ential equations

r̈i = −G
j=N∑

j=1,j 6=i
mj

ri − rj
|ri − rj |3

, (1)

where rj is the position vector of the jth body at time t, mj is its
mass, G is a constant, and a dot denotes differentiation with respect to t.
Superficially, what distinguishes the work of a mathematician from that
of, say, an astrophysicist, is its organisation into theorems, lemmas, and
so on, but that is simply a matter of style. There are few formal theorems
in Poincaré’s “Les Méthodes Nouvelles de la Mécanique Céleste”, but it
is a rich vein of ideas. At a deeper level, the work of the mathematician
aims at a greater level of rigour.

Apparently it was Herman (1710; see Volk 1975) who first solved the
two-body problem using Eq.(1) (in component form). Since then this
manner of expressing the problem has proved remarkably resilient: much
the same form of equation for the general case can be found over 200 years
later in the book by Moser (1973). Though Eqs.(1) are usually referred to
as “Newtonian”, there is nothing like them in any of Newton’s published
works or writings. Instead, his expositions are dressed in the language of
geometry or infinitesimals. Curiously, the modern language of geometry
has taken an increasingly important role in recent decades: Box 1 shows
a recent statement of the two-body problem, in terms of a manifold M
and its canonical symplectic structure. Normally, however, we prefer to
work with Eq.(1).
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Box 1. The modern two-body problem.

In relatively modern language the two-body problem may be defined
to be (Abraham & Marsden, 1978) the “system (M,Hµ,m, µ), where:

(i) M = T ∗W with canonical symplectic structure,

W = R3 ×R3\∆, ∆ =
{
(q,q)|q ∈ R3

}
;

(ii) m ∈M (initial conditions);
(iii) µ ∈ R, µ > 0 (mass ratio);
(iv) Hµ ∈ F (M) given by

Hµ(q,q′,p,p′) =
‖p‖2
2µ

+
‖p′‖2
2µ

− 1
‖q− q′‖

where q, q′ ∈ R3, p, p′ ∈ (R3)∗ and ‖ ‖ denotes the Euclidean norm in
R3.”

Our opening remark begs the question of what is meant by a “solution”.
The very existence of a solution, at least locally, is assured by the usual
undergraduate theorem in a course on ordinary differential equations (e.g.
Arnold 1978b). Globally, the obvious pitfalls are the numerous surfaces
(in phase space) where singularities of the differential equations occur,
i.e. two-body singularities (a “hypersurface” Sij where ri = rj for some
pair i, j), three-body singularities (where two two-body surfaces Sij and
Sik intersect), and so on.

Simply by counting dimensions it is easy to see that any given orbit in
phase-space is very unlikely to encounter one of these singularities. The
argument may be illustrated in a three-dimensional context. A single
condition such as x2 + y2 + z2 = 1 determines a two-dimensional surface.
An orbit is one-dimensional, and if a given orbit intersects the surface
then neighbouring orbits do (Fig.1). On the other hand if we have two
conditions to satisfy, each yields a surface, and both conditions are sat-
isfied only on their intersection, which is a curve (one-dimensional). It
is still possible for the orbit to intersect this curve, but neighbouring or-
bits do not, in general. This argument shows that curves which intersect
two surfaces simultaneously are rare in three dimensions, or “of measure
zero”.

Returning to the N -body problem, it is easy to show that orbits inter-
secting any of the surfaces Sij are rare, and so two-body and higher-order
collisions are rare in the same sense. The situation changes dramatically,
however, if we allow the position vectors ri to depend on a complex time



4 Mathematical Introduction 37

Fig. 1. If an orbit in three dimensions intersects a two-dimensional surface,
neighbouring orbits do. If it intersects a one-dimensional curve, neighbouring
orbits do not (in general).

variable t (Box 2). Why should one do this? One answer is that it is
an important setting in which to discuss the analytical properties of the
solutions, not only because of its pure-mathematical significance, but for
“practical” reasons also. For example, the numerical treatment of the
equations of motion requires special care in the vicinity of singularities
(cf. Chapter 22), and in the N -body problem these are usually to be
found in the complex t-plane. Another application (Chapter 21) is in
certain problems of three-body scattering, when a third body temporar-
ily approaches a short-period binary star; it turns out that the change
in its energy is determined by the point in the complex plane where the
intruder collides with the binary.

We have treated the two-body singularities as though they are to be
avoided at all costs. In fact they are quite innocuous. For example, sup-
pose a collision occurs in a two-body problem when t = 0, and we try to
study this problem by numerical integration of the equations of motion,
starting at some negative value of t during the approach to the collision.
As t approaches 0 from below, it will be found that the numerical inte-
gration requires ever smaller time steps as we approach the singularity
at t = 0, and there is nothing that can be done to get past it. Our
local theorems about the existence of solutions also take us no further.
When we examine the same problem analytically, however, it turns out
that the coordinates of the two bodies are expressible, in the run-up to
the collision, as power series in the variable t2/3 (Box 2). Since this se-
ries contains non-integer powers of t we recover the fact that x is not an
analytic function at t = 0. But we also observe that the series can be
expressed in powers of (t2)1/3, which may be equally well evaluated when
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Box 2. Singularities of the two-body problem.

For the planar two-body problem, complex singularities are easily lo-
cated using the exact solution. A negative-energy solution of the equation

r̈ = −r/r3 (1)

may be represented as

r = (a(cosE − e), b sinE), (2)

where a, b and e are constants such that b = a
√

1− e2, and E is deter-
mined by Kepler’s equation; this is

n(t− t0) = E − e sinE, (3)

where n and t0 are more constants, with n2a3 = 1. From Eq.(2) it
follows that r = a(1− e cosE), and so a two-body collision occurs where
cosE = 1/e, i.e. where E = ±i cosh−1(1/e) + 2πm, in which m is an
integer. By Eq.(3), this corresponds to the complex times t = t0+(2πm±
i cosh−1(1/e)− i

√
e−2 − 1).

Now let e = 1 and t0 = 0 in Eqs.(2) and (3). Then a collision occurs
at t = 0, and the analytical solution may be written as r = (x, 0), where

x = a(cosE − 1) (4)

and nt = E − sinE. In the vicinity of the collision at t = 0 we have
nt = E3/6+O(E5) and x = −aE2/2+O(E4). It is not hard to see from
the first of these equations that E is expressible as a series in odd powers
of t1/3, and then the second equation shows that x may be developed as
a series in powers of t2/3.

t is positive as when t is negative. Furthermore, it turns out that this
observation is equally valid when we consider two-body collisions which
are perturbed by other bodies, where the argument used in Box 2 (which
is based on the exact solution) no longer holds. In any event, it turns
out that this approach shows that there is an analytic continuation of the
solution beyond the two-body singularity.

Some additional steps are needed before this idea can be turned to
practical use, and we shall have something to say about this important
technique later on (Chapter 15). In the meantime we may say that there
is a choice of independent variable (the quantity t2/3 in the above discus-
sion) which allows us to represent the solution of the N -body problem
as a function which is analytic on the real axis, even if there are two-
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body collisions. We may say that the collision singularities have been
regularised.

There is an artificial but mathematically important class of N -body
problems in which these techniques are essential. Two-body collisions
occur naturally if one studies the collinear N -body problem, but when
these collisions have been neutralised, other, higher-order singularities
come into view. The most obvious of these is the triple-collision singular-
ity, in which the coordinates of three bodies tend to coincidence as some
value of t is approached. One way of studying this problem is touched
on in Chapter 21, and it shows that these singularities cannot usually be
handled by the technique of analytic continuation which works so well for
two-body collisions. The problem is that the exponents which occur in
the corresponding power series are not usually simple rational numbers,
such as the power of 2/3 which occurs in the case of two-body encoun-
ters. Instead, the exponents may involve irrational numbers such as

√
13

(Chapter 21), even in the simplest case of equal masses, and a series in-
volving such powers of t cannot be evaluated (with a real result) for both
positive and negative values of t. Nevertheless the study of these singu-
larities has progressed to remarkable lengths, and these investigations are
not without their consequences for the astrophysical applications of the
N -body problem.

The collinear N -body problem exhibits also other classes of singulari-
ties, in which no more than two bodies collide at one time, but the colli-
sions occur more and more frequently as a certain time approaches (see
Marchal 1990). In order to give an impression of how this can happen, we
have to anticipate some results of Chapter 21. Consider first the notion
of a binary. In the collinear problem this is a pair of stars exhibiting
a relative motion like that in Eq.(4) of Box 2: they periodically bounce
off each other (as we assume that the relevant two-body encounters have
been regularised). Just after one such bounce the right-hand component
moves to the right at high speed. Now suppose a third body of low mass
approaches from the right and collides with the right-hand component
(Fig.2). After this collision the third body recedes at high speed, its
energy having been gained at the expense of the binary, which becomes
“tighter”. Suppose finally there is a fourth body, to the right of the third
and moving off to the right. The third body, moving very fast, catches
up with it and, being of relatively low mass, bounces back towards the
binary. With sufficient care its next encounter can be arranged to occur,
once again, just after a collision between the binary components. (In
Chapter 20 we shall see in a little more detail how careful choice of initial
conditions can lead, in an analogous problem, to an orbit with desired
properties.) Now we have the design of a powerful four-body machine
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which, it may be shown, can accelerate the middle body to arbitrarily
high speeds within a finite time.

When we return to a more reasonable number of dimensions it is not
hard to avoid triple collisions in the three-body problem. All that is
needed is to endow the system with non-zero angular momentum in its
barycentric frame. The essential reason is that, if all three particles could
be confined (however briefly) into a sphere of radius r, energy conserva-
tion shows that their speeds would scale as r−1/2 and so their angular
momentum would scale as r1/2. Thus confinement within an arbitrarily
small volume is inconsistent with non-zero angular momentum.

Even though collisions are usually avoided in three dimensions, singu-
larities analogous to the one shown in Fig.2, though without collisions,
are still possible, at least for the 5-body problem. The story of how this
remarkable result was obtained (by J. Xia) is beautifully told in Diacu &
Holmes (1996); cf. also Saari & Xia (1995). Essentially, Xia’s example
consists of two Sitnikov machines (see Chapter 20) coupled end-to-end,
with cunningly contrived initial conditions.

Though these examples might seem like mathematical playthings, they
bear some resemblance to a curious idea with possible implications (ad-
mittedly, in the very long run) for mankind. As the sun expands and heats
up it may be possible (in principle) to keep the Earth cool by making its
orbit expand. This is done by repeated two-body encounters involving
the Earth and an asteroid, and Jupiter and the asteroid (Korycansky et
al. 2001).

1 2 3 4

time

Fig. 2. Design of a four-body machine for accelerating a particle to infinite
speed in a finite time.
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Examples like Xia’s are highly contrived and rare. In the N -body
problem there will usually be no singularities on the real time-axis. Even
if we regularise two-body collisions, however, there will usually be plenty
of singularities in the rest of the complex plane. These prevent us from
being able to express the solution of the N -body problem as power series
in t (or the appropriate regularising variable) which converge for all times.
However there is an amazingly simple transformation of the independent
variable (Box 3) which does allow us (in principle) to write the solution
as a series which converges for all times; it is not a power series in t,
however. Unfortunately the solution in this form has never been put to
practical use.

Since a solution of the 3-body problem may be expressed as a conver-
gent series, it is surprising to recall that this problem is often quoted as
one of the famous unsolved problems of applied mathematics. Clearly,
the issue hinges on what is meant by a “solution”. Though the series ex-
pression is a solution of sorts, it would be very hard to extract from this
series any information about the qualitative behaviour of the motion of
the N bodies (or even any quantitative results). Nor is it very useful for
numerical calculations as the rate of convergence is even more painfully
slow than an N -body simulation. One usually expects much more from
a satisfactory solution of a dynamical problem.

The best known class of soluble problems in dynamics are the so-called
“integrable” problems. We shall take this to mean a problem in which
sufficiently many constants of the motion can be found so that the solu-
tion may be written down in terms of “quadratures”, i.e. an integral of
a function of a single variable. How one finds these integrals is another
matter, and usually boils down to identifying a symmetry of the problem
at hand. For example the motion of a particle in any spherical poten-
tial may be integrated using the fact that the angular momentum and
energy are constant, and the existence of these integrals results from the
invariance of the potential under rotations and time-translation.

The question now arises whether the N -body problem is of this type.
For N = 2 the answer is affirmative, and indeed it may be reduced to
the problem of motion in a spherical potential (cf. Chapter 7). In fact in
this case the quadratures can be carried out analytically. Even for N =
3, however, insufficiently many integrals are known, and the search for
other integrals has even led to theorems proving their non-existence under
certain conditions (Whittaker 1927, Moser 1973). Chapter 20 describes a
particular kind of three-body problem where this question can be settled
rather directly. The existence of integrals was one of the questions which
motivated Poincaré to study the three-body problem and, in the process,
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Box 3. A series solution of the three-body problem.

For some solution of the 3-body problem let us suppose that the sin-
gularity which is closest to the real t-axis is at a distance h > 0 (i.e. its
imaginary part is ±ih). Then the solution of the N -body equations is
analytic (without singularities) throughout a strip of width 2h (Fig.1).
Now the complex transformation

t =
2h
π

log
1 + τ

1− τ
maps the unit disk τ ≤ 1 into the strip just mentioned. For example, when
t is real the transformation is τ = tanh(πt/(4h)), and this varies from
τ = −1 to τ = 1 as t increases from −∞ to ∞. Since our solution of the
N -body problem is analytic in the stated strip in the t plane, it follows
that, if τ is used as independent variable, the solution of the N -body
problem has no singularities in the unit disk. Therefore, by elementary
theorems in the theory of analytic functions, the solution can be expanded
as a power series in τ for all τ in the unit disk. In principle, therefore,
a solution of the N -body problem may be represented as a convergent
power series for all time. See Saari (1990), Barrow-Green (1996).

h

-h

Re

Imt

t

singularity

Fig. 1. A solution of the 3-body problem is analytic in a strip |Im t| < h, which
maps to the unit disc in the complex τ plane.

to uncover many of the foundations of current research in Hamiltonian
dynamical systems.

What one can do with the known integrals, however, is to reduce the
order of the problem, i.e. the dimensionality of the phase space. The
integrals associated with the motion of the centre of mass (or barycentre),
for instance, reduce the order by 6, but this is not much compared with
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6N . With all such tricks even the three-body problem can be reduced
only to order 7 (though one more order can be removed by transformation
of the independent variable). Another way of expressing this is to say
that a three-body system moves on a 7-dimensional subspace of phase
space. By studying the topology of this subspace one can sometimes
reach rigorous conclusions on the stability of three-body systems (the
“c2h” criterion, cf. Marchal 1990). But this topological problem also
has a pure-mathematical life of its own which recently led to a complete
census of all possible types of topology in this context (cf. Diacu 2000).

The topics raised in this chapter, and even the title of Poincaré’s book,
illustrate the remarkably close links that have existed between mathe-
matics and dynamical astronomy ever since the time of Newton. It is
significant, however, that most of this has occurred within the subject
that is even now termed “celestial mechanics”. Loosely speaking, this is
the mathematical study of few-body problems, usually with one domi-
nant mass, such as those found within the solar system. We think that
there is equally fertile ground for such cross-fertilisation between mathe-
matics and the N -body problem of stellar dynamics, which is the subject
of this book. That this is less well-developed than in the area of celes-
tial mechanics can be traced to the fact that astronomy as a whole has
become largely a part of physics. And yet it will be found from certain
sections of this book that tools which have been developed by mathemati-
cians for their own inscrutable reasons have turned out to have important
applications in stellar dynamics, often several decades afterwards.

Problems

1) Show that the set of initial conditions of the N -body problem which
lead to a collision between a specific pair of particles has codimension
2 (i.e. 2 less than the dimension of the set of all initial conditions).

2) Verify that x = −q(1 − σ2), y = 2qσ is a solution of Box 2, Eq.(1),
provided that q 6= 0 and

σ +
1
3
σ3 =

t√
2q3

.

Write down the appropriate collision solution, corresponding to q = 0,
and show that the orbit varies smoothly with q as one passes through
the collision orbit. Determine the geometric nature of the orbits. By
treating the x,y plane as a complex z- plane and applying the Levi
Civita transformation ζ =

√
z, determine the geometric nature of the

transformed orbits, and verify that they vary smoothly through the
collision orbit.
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Repeat this problem with the solution given in Box 2, Eq.(2), by
varying e and keeping a fixed.

3) Two particles of mass m move along the x-axis, and are located at
x1 = sin2(E/2) and x2 = −x1 at time t = E− sinE. Verify that their
motion satisfies the two-body equations if G = 1 and m = 1/2.

A third particle moves on the y-axis, and is massless. Show that its
equation of motion may be written as the system

ẏ = v

v̇ = − y

(y2 + x2
1)3/2

.

Show that there are three possible values of the constant c such that
this system has the solution y = cx1.

Change the independent variable in the system to E and code the
equations numerically. By taking initial conditions close to one of the
non-zero special solutions found previously, show that it is possible
for the particle to be ejected with very high speed. (For a comparable
problem with equal masses see Szebehely 1974.)


