Exercises

These exercises range from straightforward to somewhat involved, and also include several pro-
gramming problems, which will be either straightforward or involved depending on your familiarity
with MATLAB. The expectation is not that everyone will do every problem, but that people will
choose problems that they think are interesting or at the appropriate level. More difficult problems
are marked with a x.

The implementation exercises were designed to be done with grayscale images in MATLAB using
the MATLAB Wavelet Toolbox. The exercises include various MATLAB commands. You may use
other software and/or images if you would like.
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1. LECTURE 1

Lety € RV. Let 1 denote the n-vector with all entries equal to one. We wish to approximate
y by al, where o € R.

(a) Show that the best approximation in the ¢35 sense occurs when oo =y = % Zfi 1 Yi-
(b) Show that the best approximation in the ¢; sense occurs when « is the median of the

entries of y.

Compute a two-dimensional Haar wavelet decomposition of an image using mdwt in MAT-
LAB using Matlab’s Wavelet Toolbox. Then threshold the coefficients and reconstruct the
image. Display the original image, the original coefficients, the reconstructed image, and
the thresholded coefficients. Also,

e Calculate the relative f5 error between the image and the reconstruction and the per-
centage of zero coeflicients for different threshold values. Then plot the relative error
vs. the percentage of zeros. Discuss.

e Sort the coefficients in decreasing magnitude and plot with loglog. Try to find a
linear envelope for the tail of the coefficient vector. This is easier to do if you use the
maximum number of levels to decompose the image. Also, you can ignore the sharp
dropoff for the last few coefficients.

Nonlinearity of transform coding. Consider the trivial transform coder, in which we
retain the k signal vlues with the largest magnitude and set all others to zero. Denote the
transform coding of a signal f by T'f.

(a) Give an example of two signals that demonstrate the nonlinearity of this coder.
(b) Consider signals in R™. For a fixed k and n > 2k, is there a limit to how large

(Tu+ Tv) — T(u+v)|/||Tu+ Tv|| can be?

Use the “peppers” image, which we will denote by Iy. Perform a 3-level Haar wavelet
decomposition of this image, threshold the coefficients, and reconstruct the image. Display
the original and compressed images and compare. Adjust the threshold value so that 98.5%
of the coefficients are zero. Call the reconstructed image I;.

Take the residual Iy — I7, and repeat the above process using a wavelet packet decomposi-
tion of the residual using wpdencmp. Adjust the threshold until 96.7% of the coefficients are
zero. Call the compressed residual I». Plot the original image Iy, the reconstructed wavelet
compressed image I7, and the reconstructed wavelet and wavelet packet compressed image
I) + I, and compare. Tip: Use MATLAB’s linkaxes command and zoom in on different
parts of the image.

You may repeat this exercise for other images, but you may need to adjust the sparsity
percentages.



The following two definitions are needed for the next exercise.

Definition 1 (I, norm). Let 1 < p < oo, the I, norm on RY is

N »
|l = (Z \xilp> (1.1)

i=1

Definition 2 (weak I, norm). Let 0 < q < 0o, the weak l, norm on R is
[2][%g = supe?
e>0
(5) Show that o/l < 1]l

{i |:L‘Z| >€}‘ (1.2)
(6) An introduction to P and NP.

(a) Formally formulate the decision problem version of the problem of answering “is this
list sorted” and argue that the corresponding language is in P.

(b) Formally formulate the decision problem version of “is this graph 3-colorable.”! Prove
that the corresponding language is in NP.

(c) There are some problems which are even harder than NP; the canonical example is the
halting problem. Given an algorithm A which takes an input x and either runs forever
or stops and outputs 1 or 0, let (A) denote a description of A (for example, in machine
code—it doesn’t matter what the encoding process is, as long as it is fixed). Let L be
the language

H = {((A),z) : A(x) eventually stops.} .

Show that H is not in NP.

(d) * Perhaps you found that last part unsatisfying. It’s true that H is not in NP, but
it’s also not decidable (that is, there’s no algorithm which can decide in finite time
whether x € H). In this part you’ll show that some (decidable) problems are harder
than NP.

(i) Asa warmup, show that there are problems which can be solved in time n? which
can’t be solved in time n. To be more precise, find a language L so that there is
a deterministic algorithm A which runs in time O(n?) and decides if an input x
of length n is in L, but so that there is no A’ which can do the same in at most
n steps. (HINT: Try a diagonalization argument. That is, if Aj, Ag,... are an
enumeration of all of the machines that run for n steps on inputs of length n, try
find a language that each A; is wrong on in at least one place).

(ii) This one’s a bit harder. Show that there is a language L so that there is a
verification algorithm A which will decide (with a witness) whether x € L, but
there is no verification algorithm A’ which can do this task in polynomial time.

Ly coloring on a graph is an assignment of colors to the vertices so that any two vertices connected by an edge

have a different color. A 3-coloring is a coloring that uses only 3 colors.



2. LECTURE 2

(1) Show that the best k-sparse approximation of a vector u € R™ in terms of ¢; and ¢y error
is obtained by hard thresholding, i.e. retain the k entries of u with the largest magnitudes
and set all of the other entries to zero.

(2) Calculate (or use a computer to estimate) the coherence for the following dictionaries:

(a) the Fourier-Dirac dictionary,
(b) a wavelet packet dictionary,
(c) a d-by-N matrix with standard normally distributed entries (remember to normalize
the columns), and
(d) a random orthoprojector.
For the last two parts, you may want to run some experiments in MATLAB.

The following 4 exercises pertain to the exact hitting set problem.

(3) The ezact hitting set problem is as follows: given a finite universe V, a collection ) of
subsets Y7, Yo, ... Yy, is there a subset S of V such that each subset in ) contains exactly
one element in S? Show how to reduce this problem to an exact cover problem.

(4) Define the incidence matrix ® by

1 ifv;, €Y
Q;; = 1@;6'1 fori=1,...,Nand j=1,...,|V|.
0 otherwise

How can you express the exact hitting set problem as a linear algebra problem using the
matrix ®7

(5) In a standard Sudoku game, there are 81 cells arranged in 9 rows and 9 columns. The field
is further divided into 9 3-by-3 blocks. The numbers 1 through 9 can be entered into the
cells according to the following rules.

e Row-column: Each cell contains exactly one number.

¢ Row-number: Each row contains exactly one copy of each number.

e Column-number: Each column contains exactly one copy of each number.

e Block-number: Each block contains exactly one copy of each number.
The game of Sudoku can be formulated as an exact hitting set problem. Each cell-number
choice corresponds to a certain element in the universe of possibilities. For example, one
possibility is the number 4 in the cell located in row 2 and column 5, which we will denote
as r2c¢bnd. Fach constraint then corresponds to a subset of these possibilities. A solution to
the Sudoku game is a subset S of the possibilities such that each constraint subset contains
exactly one element of S. Write down the constraint subsets. Think about how many
constraints of each type exist, and of a sensible way to index the constraints.

(6) We will explore a somewhat simpler Sudoku game played on a 4 x 4 grid. The Sudoku
directory contains code for building the incidence matrix ®. You can solve some Sudoku
puzzles using the testcode script. You can input a Sudoku puzzle by typing it in as a
matrix, entering a zero for each blank. The code uses an iterative algorithm to find a sparse
solution to the corresponding linear system. Sometimes this algorithm finds the correct
solution and sometimes it does not.

e View the matrix ® and the Gram matrix ®7'® using imagesc.
e Find the largest number of blanks a Sudoku puzzle can have and still be solvable by
the algorithm.

(7) Let A € {0,1}™*". We say that A is d-disjunct if there is no column of A that is contained
in the “union” of any d other columns of A. More precisely, A is d-disjunct if for all S C [n]
with |S| = d, for all i € [n], there is some j € [n] so that Aj; = 1 but A;, = 0 for all
£ € S. The decision problem D-DISJUNCT is, given A and d, to decide whether or not A is



d-disjunct.

We say that a language is in co-NP if its complement is in NP. For example, the problem
NOT-X3C of deciding that there is no exact cover is co-NP complete. Use a reduction from
NOT-X3C to show that D-DI1SJUNCT is co-NP hard.
Recall from class that (the decision problem version of) ERROR is the following problem:
given & € R™*™ k > 0, ¢ > 0, and y € R™, decide if there is an £ € R™ so that z is
k-sparse, and

@z —yl| <e.
Adapt the reduction from class to show that ERROR is NP-complete. (Hint: the “adapta-
tion” should not require much adapting).



(1)

3. LECTURE 3

Take a 32 x 32 block from a random location in an image, and call this block I. Let ¢ be
a redundant dictionary consisting of a Dirac basis and a two-dimensional discrete cosine
transform (DCT) basis. Implement OMP to compute the k-sparse approximations of
for k = 1,2,3,...,100. (You can create a general algorithm that can be applied to any
dictionary, or you can create an algorithm tailored to this specific choice of dictionary.) For
each value of k display the k-sparse approximation and the residual.

Tips:

e To compute the DCT coefficients and DCT modes you may want to use dctmtx.

e For each value of k, you will construct a k-by-322 matrix A consisting of the k optimal
atoms written as vectors. You can find the the vector ¢ of optimal coefficients by
finding a least squares solution of Ac = I using the backslash command, where I is the
image written as a vector.

Prove the Welch bound, that the coherence p of a d x N dictionary is bounded by

. [ N-d
Feaw =1y

HINT 1: Consider the trace of ®*®. On the one hand, this is N (why?). On the other
hand, you can bound it above: First use the Cauchy Schwartz inequality and the fact that

N N N
DD HenaplP =3 A%
i=1

i=1 j=1

where \; are the eigenvalues of ®*®, to show that

Z (4, ;)] 2> E — N.

i#]
(It helps to notice that at most d of the \; are nonzero—why?). Then bound g in terms of
Zi;&j (i, ).

HINT 2: There’s a proof on Wikipedia if you get stuck.

Recall from Professor Willett’s course (or be informed now) that we say that & € R™*"
satisfies the restricted isometry property with constants k and 0 if, for all k-sparse
vectors x,

(1 =)zl < []3 < (1 + 8)|l13.

Recall from class that OMP is the following algorithm (I’ve added some extra lines in order
to define notation):
erg=z,c=0,t=1,S =0
e while ¢ < k:
Ji = arg max, [(re—1, ¢¢)|
Sy = Si—1U{ji}
Cy = arg minsupp(C)CSt HJ: - (I)CHQ
r =x — Pcy
t=t+1
Show that, if ® has the RIP with constants K+ 1 and § < 7, that OMP will solve ExacT
for any k-sparse vector ¢*, in k iterations. Here’s an outline of one way the proof could go®:

2See Davenport and Wakin 2010, “Analysis of Orthogonal Matching Pursuit using the Restricted Isometry
Property”



(a) Show that ® has the RIP of order k&’ with constant § and v and v have ||ju + v|]s < ¥/,
then
[(Pu, Pv) = (u, v)| < Slull2][v]2-
(HINT: use the parallelogram law.)

(b) Show that for any k-sparse ¢ € RV, ||¢o0 > %

(¢) The proof will go by induction. For the following steps, assume the inductive hypothesis
that S; C supp(c*). Notice that the inductive hypothesis is satisfied to begin with.

(d) Let II; denote the projection on the columns of ® indexed by S;. Show that r, =

(e) Let ¢f denote the restriction of ¢* to the complement of S;. That is, (c¢f); = 0if j € Sy,
and (c;); = (c¢*); otherwise. Show that (I —II;)®c* = (I — II;)®(c}).

(f) * Show that if ® has the RIP of order k and constant ¢, then for any u with |luljo <
k —|S;| and supp(u) NSy = 0, then

(1= 20) [lull3 < [[(1 = M) @ull5 < (1 +0)]ull3,

where II; is as in the previous part. That is, (I — II;) has the RIP with constant 2.
HiNTS: First write || ®ul|3 = ||[TL®ul|3+ || (I —I1;)®ul3. It suffices to show that ||T[;Pul|
is suitably small. Use part (3a).

(g) * We are finally ready to do the inductive step! Use parts the previous parts to show
that j; is in the support of ¢ (and not in S;). HINTS: Apply part (3a) to part (3f) to
get a bound on (1, pg) — ¢f, after rewriting it using parts (3d, 3e). Use part (3b) to
show that we must pick an index in the support of cj.

(h) Explain why we are done.



4. LECTURE 4

Definition 3. A norm is a function f:R"™ — R with the following properties:
e Nonnegativity. f(x) >0 for all z € R™.
e Nondegeneracy. The only vector with norm zero is the zero vector, i.e. f(x) =0 <= x =
0.
e Homogeneity. For any a € R, z € R", f(ax) = |a|f(z).
e Triangle inequality. For any x,y € R", f(x +y) < f(x) + f(y).

Definition 4. A convex function is a function f: R™ — R such that for all o € [0,1],u,v € R",
f((A=a)utav) < (1 —a)f(u) + af(v).
Definition 5. The ly “norm” is defined as
[@llo = #{i = x; # 0}
Definition 6. The l; norm is defined as
n
lzll = lal.
i=1
(1) Why is lp not a norm? Why is it not a convex function? Why is /; a convex function?
(2) * Recall from Professor Raskhodnikova’s class last week that communication complexity is
a good way to prove lower bounds. In this problem, we’ll use it to prove lower bounds for
the COMPRESSED SENSING problem. Recall that the goal of COMPRESSED SENSING is to
define a distribution D over d X n matrices so that for any fixed x € R", if ® is drawn from
D, then I is recoverable from ®x so that

|z — 2|1 < Cllz —

for some constant C, with probability at least 2/3 over the choice of ®. We’ll show that
d = Q(klog(n/k)).® You may want to suppose for simplicity that the entries of ® have b
bits of precision, for some universal constant b. We’ll need the following facts.

e Thereisaset S C {0,1}" with log(|S|) = Q(klog(N/k)) so that each s; € S is k-sparse
so that [|s; — s;j|lo > & for all ¢ # j.

e Suppose that Alice is given z € {0,1}"V and Bob is given i € {1,2,..., N}, as well
as x1,...,x;—1. Alice sends one message to Bob, and Bob must output x; with prob-
ability at least 2/3. Alice and Bob have shared randomness. This problem is called
AUGMENTED INDEXING, and the communication complexity (that is, the number of
bits that Alice sends Bob) is known to be Q(N).

Given these facts, use a reduction from AUGMENTED INDEXING to show that d = Q(klog(n/k)).

HiNTs: (These will basically give away the answer, although it leaves the details to you;
you might want to try it on your own first).
e The idea is that Alice will break up x into ¢ chunks of size log |S|, and each chunk will
be a pointer to some k-sparse string s;.
e Alice will send ® (Z§:1 oj3j> for appropriate o;, where o; is very large for small j
and less large for large j.
e Bob will be able to compute ® (Zﬁ:i ajsj>. (Why?)
e If 0; are chosen appropriately, then the “head” of the signal )" o;s; will just be o;s;.
If the compressed sensing algorithm is good, Bob can recover s; with minimal noise.

3This exercise follows the argument in Do Ba, Indyk, Price, and Woodruff, “Lower bounds for sparse recovery,”
2010.



