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e Even if x can be expressed sparsely, OMP may take d steps
before the residual is zero.

e But, sometimes OMP correctly identifies sparse
representations.
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Sparse representation with OMP
e Suppose x has k-sparse representation
X = ZCEW where |A| = k
Len

i.e., Copt IS non-zero on A.
Sufficient to find A—When can OMP do so?
Define

On=[pn ¢, o ¢ul,en and
\U/\ = [Sofl Do, @f,\/,k]gsg/\

Define greedy selection ratio

~ maxggp | (r, ¢ >| wirll, _ max i.p. bad atoms
— maxeen | (r, po) | ||@Fr||,,  maxi.p. good atoms

OMP chooses good atom iff p(r) <1
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Exact Recovery Condition

Theorem (ERC)
A sufficient condition for OMP to identify N after k steps is that

max||ox ], <1

Where A+ = (ATA)_IAT [Tropp'04]

e AT x is a coefficient vector that synthesizes best
approximation of x using atoms in A.

e P = AAT orthogonal projector produces this best
approximation
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rp = x € range(®y)
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Then OMP selects an atom from A at iteration t and since it chooses a new atom at each iteration,

After k iterations, chosen all atoms from A.



Coherence Bounds

Theorem

The ERC holds whenever k < %(/fl + 1). Therefore, OMP can
recover any sufficiently sparse signals. [troppoq

For most redundant dictionaries, k < %(\/H—i— 1).



SPARSE

Theorem

Assume k < % w1, For any vector x, the approximation ®C after k
steps of OMP satisfies |[c||, < k and

Ix = @[, < VI+6k|[x — Peopell,

where Copy s the best k-term approximation to x over ®. [Tioppod

Theorem
Assume 4 < k < ﬁ Two-phase greedy pursuit produces x = ¢
s.t.
[[x =Xl < 3]x = ®copt[ -
Assume k < % Two-phase greedy pursuit produces X = dC s.t.

~ 2/1k?
Ix =%l < (14 7 52) I = PConlz

[Gilbert, Strauss, Muthukrishnan, Tropp '03]
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e EEXACT: non-convex optimization

arg min||c|, st x=&c

e Convex relaxation of non-convex problem

argmin||c|; st x=&c
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Convex relaxation: algorithmic formulation

o We”-StUdied a|g0rithmic formu|ation [Donoho, Donoho-Elad-Temlyakov, Tropp,

and many others]

e Optimization problem = linear program: linear objective
function (with variables ¢, ¢™) and linear constraints

e Still need algorithm for solving optimization problem

e Hard part of analysis: showing solution to convex problem =
solution to original problem



min z7 +z3 st. x1 >0,20 > 0,27 + 225 =4

feasible region 1 + 2z2 =4

minimum

maximum

e Feasible region is convex
polytope

e Linear objective function:
convex and concave —
local minimum/maximum
are global

o |f feasible solution exists
and if objective function
bounded, then optimum
achieved on boundary
(possibly many points)
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Exact Recovery Condition

Theorem (ERC)

A sufficient condition for BP to recover the sparsest representation
of x is that

maxHCD 504”1 <1

Where A+ = (ATA)_IA . [Tropp'04]

Theorem
The ERC holds whenever k < (=1 + 1). Therefore, BP can

recover any sufficiently sparse SIgna/s [Tropp'04]
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Convex relaxation: BP-denoising

e ERROR: non-convex optimization

arg min|[c|ly st [[x —Pcll, <€

e Convex relaxation of non-convex problem
arg min||c|l; st [x—Pc|, <4

e Convex objective function over convex set.



Optimization formulations

e Constrained minimization
arg min|c|; st |lx—®c|, <6

e Unconstrained minimization (¢1-regularization):
minimize

1 2
L(c;v,x) = 5 [x — ®cll5 + 7 lcll; -



e Constrained minimization

Theorem

Suppose that k < %;fl. Suppose copt is k-sparse and solves
original optimization problem. Then solution € to constrained
minimization problem has same sparsity and satisfies

Ix — o], < (m)e

[Tropp '04]

¢ Unconstrained minimization: many algorithms for
{1-regularization (e.g., Bregman iteration, interior point
methods, LASSO and LARS)



Optimization vs. Greedy

e EXACT and ERROR amenable to convex relaxation and
convex optimization

e SPARSE not amenable to convex relaxation
arg min [|[®c — x|, st |cllp <k

but appropriate for greedy algorithms



Hardness depends on instance

Redundant dictionary ®

input signal x

NP-hard-

depends on |
choice of ®

compressive

sensing

random
(distribution?

+— random
signal model




Random signal model

Theorem

If & has consistent coherence yn = 1/+/d, choose k ~ d/log d
atoms for x at random from ®, then sparse representation is
unique and, given x and ®, convex relaxation finds it. [rroppo7]



Summary

o Geometry of dictionary is important but

e Obtain sufficient conditions on the geometry of the dictionary
to solve SPARSE problems efficiently.

e Algorithms are approximation algorithms (wrt error).
e Greedy pursuit and convex relaxation.

e Next lecture: Sublinear algorithms for sparse approximation
and compressive sensing



