Algorithms for sparse analysis Lecture III: Dictionary geometry, greedy algorithms, and convex relaxation

Anna C. Gilbert

Department of Mathematics University of Michigan

Convergence of OMP

Theorem

Suppose Φ is a complete dictionary for \mathbb{R}^d . For any vector x, the residual after t steps of OMP satisfies

$$||r_t||_2 \leq c \frac{1}{\sqrt{t}}.$$

[Devore-Temlyakov]

Convergence of OMP

Theorem

Suppose Φ is a complete dictionary for \mathbb{R}^d . For any vector x, the residual after t steps of OMP satisfies

$$||r_t||_2 \leq c \frac{1}{\sqrt{t}}.$$

[Devore-Temlyakov]

• Even if x can be expressed sparsely, OMP may take d steps before the residual is zero.

Convergence of OMP

Theorem

Suppose Φ is a complete dictionary for \mathbb{R}^d . For any vector x, the residual after t steps of OMP satisfies

$$||r_t||_2 \leq c \frac{1}{\sqrt{t}}.$$

[Devore-Temlyakov]

- Even if x can be expressed sparsely, OMP may take d steps before the residual is zero.
- But, sometimes OMP correctly identifies sparse representations.

• Suppose x has k-sparse representation

$$x = \sum_{\ell \in \Lambda} c_\ell arphi_\ell$$
 where $|\Lambda| = k$

i.e., $c_{\rm opt}$ is non-zero on Λ .

• Suppose *x* has *k*-sparse representation

$$x = \sum_{\ell \in \Lambda} c_\ell arphi_\ell$$
 where $|\Lambda| = k$

i.e., $c_{\rm opt}$ is non-zero on Λ .

Sufficient to find Λ—When can OMP do so?

• Suppose x has k-sparse representation

$$x = \sum_{\ell \in \Lambda} c_{\ell} \varphi_{\ell}$$
 where $|\Lambda| = k$

i.e., $c_{\rm opt}$ is non-zero on Λ .

- Sufficient to find Λ—When can OMP do so?
- Define

$$\begin{split} & \Phi_{\Lambda} = \begin{bmatrix} \varphi_{\ell_1} & \varphi_{\ell_2} & \cdots & \varphi_{\ell_k} \end{bmatrix}_{\ell_s \in \Lambda} \text{ and } \\ & \Psi_{\Lambda} = \begin{bmatrix} \varphi_{\ell_1} & \varphi_{\ell_2} & \cdots & \varphi_{\ell_{N-k}} \end{bmatrix}_{\ell_s \notin \Lambda} \end{split}$$

• Suppose x has k-sparse representation

$$x = \sum_{\ell \in \Lambda} c_\ell \varphi_\ell$$
 where $|\Lambda| = k$

i.e., $c_{\rm opt}$ is non-zero on Λ .

- Sufficient to find Λ —When can OMP do so?
- Define

$$\begin{split} & \Phi_{\Lambda} = \begin{bmatrix} \varphi_{\ell_1} & \varphi_{\ell_2} & \cdots & \varphi_{\ell_k} \end{bmatrix}_{\ell_s \in \Lambda} \text{ and } \\ & \Psi_{\Lambda} = \begin{bmatrix} \varphi_{\ell_1} & \varphi_{\ell_2} & \cdots & \varphi_{\ell_{N-k}} \end{bmatrix}_{\ell_s \notin \Lambda} \end{split}$$

Define greedy selection ratio

$$\rho(r) = \frac{\max_{\ell \notin \Lambda} |\left\langle r, \; \varphi_{\ell} \right\rangle|}{\max_{\ell \in \Lambda} |\left\langle r, \; \varphi_{\ell} \right\rangle|} = \frac{\left\| \Psi_{\Lambda}^T r \right\|_{\infty}}{\left\| \Phi_{\Lambda}^T r \right\|_{\infty}} = \frac{\text{max i.p. bad atoms}}{\text{max i.p. good atoms}}$$

• Suppose x has k-sparse representation

$$x = \sum_{\ell \in \Lambda} c_\ell arphi_\ell$$
 where $|\Lambda| = k$

i.e., $c_{\rm opt}$ is non-zero on Λ .

- Sufficient to find Λ —When can OMP do so?
- Define

$$\begin{split} & \Phi_{\Lambda} = \begin{bmatrix} \varphi_{\ell_1} & \varphi_{\ell_2} & \cdots & \varphi_{\ell_k} \end{bmatrix}_{\ell_s \in \Lambda} \text{ and } \\ & \Psi_{\Lambda} = \begin{bmatrix} \varphi_{\ell_1} & \varphi_{\ell_2} & \cdots & \varphi_{\ell_{N-k}} \end{bmatrix}_{\ell_s \notin \Lambda} \end{split}$$

• Define greedy selection ratio

$$\rho(r) = \frac{\max_{\ell \notin \Lambda} |\left\langle r, \; \varphi_{\ell} \right\rangle|}{\max_{\ell \in \Lambda} |\left\langle r, \; \varphi_{\ell} \right\rangle|} = \frac{\left\| \Psi_{\Lambda}^T r \right\|_{\infty}}{\left\| \Phi_{\Lambda}^T r \right\|_{\infty}} = \frac{\text{max i.p. bad atoms}}{\text{max i.p. good atoms}}$$

• OMP chooses good atom iff $\rho(r) < 1$

Exact Recovery Condition

Theorem (ERC)

A sufficient condition for OMP to identify Λ after k steps is that

$$\max_{\ell \notin \Lambda} \left\| \Phi_{\Lambda}^{+} \varphi_{\ell} \right\|_{1} < 1$$

where
$$A^{+} = (A^{T}A)^{-1}A^{T}$$
. [Tropp'04]

Exact Recovery Condition

Theorem (ERC)

A sufficient condition for OMP to identify Λ after k steps is that

$$\max_{\ell \notin \Lambda} \left\| \Phi_{\Lambda}^{+} \varphi_{\ell} \right\|_{1} < 1$$

where
$$A^{+} = (A^{T}A)^{-1}A^{T}$$
. [Tropp'04]

- A⁺x is a coefficient vector that synthesizes best approximation of x using atoms in A.
- $P = AA^+$ orthogonal projector produces this best approximation

 $r_0 = x \in \mathsf{range}(\Phi_{\Lambda})$

 $r_0 = x \in \mathsf{range}(\Phi_\Lambda)$

At iteration t+1 assume $\ell_1,\ell_2,\ldots,\ell_t\in\Lambda$, thus $a_t\in \mathsf{range}(\Phi_\Lambda)$ and $r_t=x-a_t\in \mathsf{range}(\Phi_\Lambda)$

 $r_0=x\in \mathsf{range}(\Phi_\Lambda)$ At iteration t+1 assume $\ell_1,\ell_2,\ldots,\ell_t\in \Lambda$, thus $a_t\in \mathsf{range}(\Phi_\Lambda)$ and $r_t=x-a_t\in \mathsf{range}(\Phi_\Lambda)$ Express orthogonal projector onto $\mathsf{range}(\Phi_\Lambda)$ as $(\Phi_\Lambda^+)^T\Phi_\Lambda^T$, therefore

$$(\Phi_{\Lambda}^+)^T \Phi_{\Lambda}^T r_t = r_t.$$

 $r_0 = x \in \mathsf{range}(\Phi_{\Lambda})$

At iteration t+1 assume $\ell_1,\ell_2,\ldots,\ell_t\in\Lambda$, thus $a_t\in\mathsf{range}(\Phi_\Lambda)$ and $r_t=x-a_t\in\mathsf{range}(\Phi_\Lambda)$

Express orthogonal projector onto $\mathsf{range}(\Phi_{\Lambda})$ as $(\Phi_{\Lambda}^+)^{\mathcal{T}}\Phi_{\Lambda}^{\mathcal{T}}$, therefore

$$\big(\Phi_{\Lambda}^+\big)^T \Phi_{\Lambda}^T \mathit{r}_t = \mathit{r}_t.$$

Bound

$$\begin{split} \rho(r_t) &= \frac{\left\| \boldsymbol{\Psi}_{\Lambda}^T r_t \right\|_{\infty}}{\left\| \boldsymbol{\Phi}_{\Lambda}^T r_t \right\|_{\infty}} = \frac{\left\| \boldsymbol{\Psi}_{\Lambda}^T (\boldsymbol{\Phi}_{\Lambda}^+)^T \boldsymbol{\Phi}_{\Lambda}^T r_t \right\|_{\infty}}{\left\| \boldsymbol{\Phi}_{\Lambda}^T r_t \right\|_{\infty}} \\ &\leq \left\| \boldsymbol{\Psi}_{\Lambda}^T (\boldsymbol{\Phi}_{\Lambda}^+)^T \right\|_{\infty} \\ &= \left\| \boldsymbol{\Phi}_{\Lambda}^+ \boldsymbol{\Psi}_{\Lambda} \right\|_{1} \\ &= \max_{\ell \notin \Lambda} \left\| \boldsymbol{\Phi}_{\Lambda}^T \varphi_{\ell} \right\|_{1} < 1 \end{split}$$

 $r_0 = x \in \mathsf{range}(\Phi_{\Lambda})$

At iteration t+1 assume $\ell_1,\ell_2,\ldots,\ell_t\in\Lambda$, thus $a_t\in {\rm range}(\Phi_\Lambda)$ and $r_t=x-a_t\in {\rm range}(\Phi_\Lambda)$ Express orthogonal projector onto ${\rm range}(\Phi_\Lambda)$ as $(\Phi_\Lambda^+)^T\Phi_\Lambda^T$, therefore

$$(\Phi_{\Lambda}^+)^T \Phi_{\Lambda}^T r_t = r_t.$$

Bound

$$\begin{split} \rho(r_t) &= \frac{\left\| \Psi_{\Lambda}^T r_t \right\|_{\infty}}{\left\| \Phi_{\Lambda}^T r_t \right\|_{\infty}} = \frac{\left\| \Psi_{\Lambda}^T (\Phi_{\Lambda}^+)^T \Phi_{\Lambda}^T r_t \right\|_{\infty}}{\left\| \Phi_{\Lambda}^T r_t \right\|_{\infty}} \\ &\leq \left\| \Psi_{\Lambda}^T (\Phi_{\Lambda}^+)^T \right\|_{\infty} \\ &= \left\| \Phi_{\Lambda}^+ \Psi_{\Lambda} \right\|_{1} \\ &= \max_{\ell \notin \Lambda} \left\| \Phi_{\Lambda}^T \varphi_{\ell} \right\|_{1} < 1 \end{split}$$

Then OMP selects an atom from Λ at iteration t and since it chooses a new atom at each iteration,

 $r_0 = x \in \mathsf{range}(\Phi_{\Lambda})$

At iteration t+1 assume $\ell_1,\ell_2,\ldots,\ell_t\in\Lambda$, thus $a_t\in\mathrm{range}(\Phi_\Lambda)$ and $r_t=x-a_t\in\mathrm{range}(\Phi_\Lambda)$ Express orthogonal projector onto $\mathrm{range}(\Phi_\Lambda)$ as $(\Phi_\Lambda^+)^T\Phi_\Lambda^T$, therefore

$$\big(\Phi_{\Lambda}^+\big)^T\Phi_{\Lambda}^T r_t = r_t.$$

Bound

$$\begin{split} \rho(r_t) &= \frac{\left\| \boldsymbol{\Psi}_{\Lambda}^T r_t \right\|_{\infty}}{\left\| \boldsymbol{\Phi}_{\Lambda}^T r_t \right\|_{\infty}} = \frac{\left\| \boldsymbol{\Psi}_{\Lambda}^T (\boldsymbol{\Phi}_{\Lambda}^+)^T \boldsymbol{\Phi}_{\Lambda}^T r_t \right\|_{\infty}}{\left\| \boldsymbol{\Phi}_{\Lambda}^T r_t \right\|_{\infty}} \\ &\leq \left\| \boldsymbol{\Psi}_{\Lambda}^T (\boldsymbol{\Phi}_{\Lambda}^+)^T \right\|_{\infty} \\ &= \left\| \boldsymbol{\Phi}_{\Lambda}^+ \boldsymbol{\Psi}_{\Lambda} \right\|_{1} \\ &= \max_{\ell, \ell, \Lambda} \left\| \boldsymbol{\Phi}_{\Lambda}^T \varphi_{\ell} \right\|_{1} < 1 \end{split}$$

Then OMP selects an atom from Λ at iteration t and since it chooses a new atom at each iteration, After k iterations, chosen all atoms from Λ .

Coherence Bounds

Theorem

The ERC holds whenever $k < \frac{1}{2}(\mu^{-1} + 1)$. Therefore, OMP can recover any sufficiently sparse signals. [Tropp'04]

For most redundant dictionaries, $k < \frac{1}{2}(\sqrt{d} + 1)$.

SPARSE

Theorem

Assume $k \leq \frac{1}{3}\mu^{-1}$. For any vector x, the approximation $\Phi \widehat{c}$ after k steps of OMP satisfies $\|\widehat{c}\|_0 \leq k$ and

$$||x - \Phi \hat{c}||_2 \le \sqrt{1 + 6k} ||x - \Phi c_{\text{opt}}||_2$$

where c_{opt} is the best k-term approximation to x over Φ . [Tropp'04]

Theorem

Assume $4 \le k \le \frac{1}{\sqrt{\mu}}$. Two-phase greedy pursuit produces $\hat{x} = \Phi \hat{c}$ s.t.

$$\|x-\widehat{x}\|_2 \leq 3 \|x-\Phi c_{\mathrm{opt}}\|_2.$$

Assume $k \leq \frac{1}{\mu}$. Two-phase greedy pursuit produces $\hat{x} = \Phi \hat{c}$ s.t.

$$\|x - \widehat{x}\|_{2} \le \left(1 + \frac{2\mu k^{2}}{(1 - 2\mu k)^{2}}\right) \|x - \Phi c_{\text{opt}}\|_{2}.$$

Convex relaxation: BP

• EXACT: non-convex optimization

$$\arg\min \|c\|_0 \quad \text{s.t.} \quad x = \Phi c$$

Convex relaxation: BP

• EXACT: non-convex optimization

$$\arg\min \|c\|_0 \quad \text{s.t.} \quad x = \Phi c$$

Convex relaxation of non-convex problem

$$arg min ||c||_1$$
 s.t. $x = \Phi c$

Convex relaxation

coefficient value

Convex relaxation: algorithmic formulation

- Well-studied algorithmic formulation [Donoho, Donoho-Elad-Temlyakov, Tropp, and many others]
- Optimization problem = linear program: linear objective function (with variables c^+ , c^-) and linear constraints
- Still need algorithm for solving optimization problem
- Hard part of analysis: showing solution to convex problem = solution to original problem

LP

- Feasible region is convex polytope
- Linear objective function: convex and concave ⇒ local minimum/maximum are global
- If feasible solution exists and if objective function bounded, then optimum achieved on boundary (possibly many points)

Exact Recovery Condition

Theorem (ERC)

A sufficient condition for BP to recover the sparsest representation of x is that

$$\max_{\ell \notin \Lambda} \left\| \Phi_{\Lambda}^{+} \varphi_{\ell} \right\|_{1} < 1$$

where
$$A^{+} = (A^{T}A)^{-1}A^{T}$$
. [Tropp'04]

Exact Recovery Condition

Theorem (ERC)

A sufficient condition for BP to recover the sparsest representation of x is that

$$\max_{\ell \notin \Lambda} \left\| \Phi_{\Lambda}^{+} \varphi_{\ell} \right\|_{1} < 1$$

where
$$A^{+} = (A^{T}A)^{-1}A^{T}$$
. [Tropp'04]

Theorem

The ERC holds whenever $k < \frac{1}{2}(\mu^{-1} + 1)$. Therefore, BP can recover any sufficiently sparse signals. [Tropp'04]

Convex relaxation: BP-denoising

• Error: non-convex optimization

$$\arg \min \|c\|_0 \quad \text{s.t.} \quad \|x - \Phi c\|_2 \le \epsilon$$

Convex relaxation: BP-denoising

• Error: non-convex optimization

$$\arg\min \left\|c\right\|_0 \quad \text{s.t.} \quad \left\|x - \Phi c\right\|_2 \leq \epsilon$$

Convex relaxation of non-convex problem

$$\arg\min\|c\|_1\quad\text{s.t.}\quad\|x-\Phi c\|_2\leq\delta.$$

Convex objective function over convex set.

Optimization formulations

Constrained minimization

$$\arg\min\|c\|_1\quad\text{s.t.}\quad\|x-\Phi c\|_2\leq\delta.$$

• Unconstrained minimization (ℓ_1 -regularization): minimize

$$L(c; \gamma, x) = \frac{1}{2} \|x - \Phi c\|_{2}^{2} + \gamma \|c\|_{1}.$$

Constrained minimization

Theorem

Suppose that $k \leq \frac{1}{3}\mu^{-1}$. Suppose c_{opt} is k-sparse and solves original optimization problem. Then solution \widehat{c} to constrained minimization problem has same sparsity and satisfies

$$\|x - \Phi \widehat{c}\|_2 \le \left(\sqrt{1 + 6k}\right)\epsilon.$$

[Tropp '04]

• Unconstrained minimization: many algorithms for ℓ_1 -regularization (e.g., Bregman iteration, interior point methods, LASSO and LARS)

Optimization vs. Greedy

 EXACT and ERROR amenable to convex relaxation and convex optimization

SPARSE not amenable to convex relaxation

$$\arg\min \|\Phi c - x\|_2 \quad \text{s.t.} \quad \|c\|_0 \le k$$

but appropriate for greedy algorithms

Hardness depends on instance

Random signal model

Theorem

If Φ has consistent coherence $\mu=1/\sqrt{d}$, choose $k\sim d/\log d$ atoms for x at random from Φ , then sparse representation is unique and, given x and Φ , convex relaxation finds it. [Tropp '07]

Summary

- Geometry of dictionary is important but
- Obtain *sufficient* conditions on the geometry of the dictionary to solve Sparse problems efficiently.
- Algorithms are approximation algorithms (wrt error).
- Greedy pursuit and convex relaxation.
- Next lecture: Sublinear algorithms for sparse approximation and compressive sensing