1 Homework I

1. Eigenvectors and eigenvalues

Let

$$
K=\left(\begin{array}{ll}
.75 & .25 \\
.25 & .75
\end{array}\right)
$$

- Show that 1 and $1 / 2$ are eigenvalues of K and find the eigenvectors. Express K as $P D P^{-1}$ where D is diagonal and P is orthonormal.
- Let $K^{\prime}=\alpha K$ for real $\alpha \neq 0$. Find the eigenvalues and eigenvectors of K^{\prime}.
- Consider the m th power of K, K^{m}, for $m>0$. Find the eigenvectors and eigenvalues of K^{m}.

2. Gaussian random variables

Recall that a Gaussian random variable \mathbf{x} with mean μ and standard deviation σ has density:

$$
\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

We will use the notation $\mathbf{x} \sim \mathcal{N}(\mu, \sigma)$.

- Suppose a and b are constants. Show that if $\mathbf{x} \sim \mathcal{N}(0,1)$, then $b \mathbf{x}+a \sim \mathcal{N}(a, b)$.
- Show that if $\mathbf{x}_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}\right)$ and $\mathbf{x}_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}\right)$, then $\mathbf{x}_{1}+\mathbf{x}_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)$.
- Suppose $\mathbf{x} \sim \mathcal{N}(0, \sigma)$. What is $\mathbb{E}\left(\mathbf{x}^{2}\right)$? What is the distribution of \mathbf{x}^{2} ?

