1 Principal components and least squares fitting

Suppose that $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{p}\right)$ are the x and y coordinates of some data. Suppose that the data is centered, so that $\bar{x}=\frac{1}{p} \sum_{j=1}^{p} x_{j}=0$ and $\bar{y}=\frac{1}{p} \sum_{j=1}^{p} y_{j}=0$.

- Show that the square of the distance between a point $\left(x_{j}, y_{j}\right)$ and a fixed line $y=a x$ is

$$
d^{2}=\left(\frac{1}{1+a^{2}}\right)^{2}\left(y_{j}-a x_{j}\right)^{2}
$$

(Recall that the distance between a point \mathbf{x} and a line L is the shortest distance between \mathbf{x} and any point on L.)

- The sum of squared distances between a fixed line $y=a x$ and the data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{p}, y_{p}\right)$ is

$$
D(a)=\left(\frac{1}{1+a^{2}}\right)^{2} \sum_{j=1}^{p}\left(y_{j}-a x_{j}\right)^{2}
$$

- Argue that if $\mathbf{v}_{1}=(1, u)$ and $\mathbf{v}_{2}=(1, v)$ are distinct principal components of the covariance matrix

$$
\mathcal{C}=\left(\begin{array}{cc}
\operatorname{cov}(\mathbf{x}, \mathbf{x}) & \operatorname{cov}(\mathbf{x}, \mathbf{y}) \\
\operatorname{cov}(\mathbf{x}, \mathbf{y}) & \operatorname{cov}(\mathbf{y}, \mathbf{y})
\end{array}\right)
$$

then u and v are the critical points of $D\left(\right.$ that is, $\left.D^{\prime}(v)=D^{\prime}(u)=0\right)$.

- Which critical point corresponds to a least squares distance? Which corresponds to a maximal least squares distance? Why does this make sense geometrically?

