1 Principal components and least squares fitting
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Suppose that x = (21, 22,...,2p) and y = (y1,%2,...,yp) are the z and y coordinates of some

data.

Suppose that the data is centered, so that z = %Z?Zl zj=0and y = %Z?ﬂ y; = 0.

Show that the square of the distance between a point (z;,y;) and a fixed line y = ax is
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(Recall that the distance between a point x and a line L is the shortest distance between x
and any point on L.)

The sum of squared distances between a fixed line y = ax and the data (z1,y1), ..., (Zp,Yp)
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D(a) = <1+1a2) > (yj —az))*.
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Argue that if vi = (1,u) and vo = (1,v) are distinct principal components of the covariance
matrix
cov(x,Xx) cov(x,y)
C= )
cov(x,y) cov(y,y)
then u and v are the critical points of D (that is, D'(v) = D'(u) = 0).

Which critical point corresponds to a least squares distance? Which corresponds to a maximal
least squares distance? Why does this make sense geometrically?



