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•  The signal may be weak relative to 
the sensitivity of the sensor 

•  The true field being measured (e.g. 
voltage or light intensity) gets 
quantized for storage on a digital 
system (e.g. computer) 

•  The field being sensed may be 
contaminated by the ambient 
environment (e.g. a microphone 
picks up not just a speaker, but 
also a little of the audience noise) 

•  Data may have been lost during 
storage and transmission 



We model a noisy signal as

yi = fi + ni

where fi is the ith element of the true signal, yi is the corre-

sponding observation, and ni is the noise or error in that mea-

surement.

Our goal is to estimate f from y without knowing n.

Without any assumptions about the structure of f and n, this task

would be impossible. Thus we typically make two key assump-

tions:

• The noise has some known properties, such as

• is stochastic with a known distribution

• is bounded, so �n�22 < � where � is known.

• The signal has some known properties, such as

• is smooth or piecewise smooth

• is sparse in some basis.



We can often assume each noise ele-
ment ni is drawn independently from
a Gaussian distribution, so that the
probability distribution function under-
lying ni is

p(ni) =
1√
2πσ2

e−n2i /2σ
2
;

we write

ni ∼ N (0,σ2).

We typically assume that the ni’s are
uncorrelated with the fi’s and inde-
pendent of i, the sample index.
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p(ni) =

1√
2πσ2

e−(ni−0)2/2σ2; ni ∼ N (0,σ2),

implies

p(yi|fi) =
1√
2πσ2

e−(yi−fi)2/2σ2; yi|fi ∼ N (fi,σ
2).



We can also consider the joint distribution of all the ni’s in a
noisy signal of length N :

p(n|µ,Σ)
�
= (2π)−N/2|Σ|−1/2e−

1
2(n−µ)TΣ−1(n−µ)

n ∼ N (µ,Σ)

µ
�
= E[n]

Σ
�
= E

�
(n− µ)(n− µ)T

�

Σi,j = E
�
(ni − µi)(nj − µj)

T
�
.

When Σ = σ2I, then all the elements of n are uncorrelated
and

p(n|µ,Σ) =
N�

i=1
p(ni|µi,σ2).



Suppose that we transform a multivariate normal vector n by
applying a linear transformation (matrix) A:

m = An

(n,m random, A deterministic). Then

n ∼ N (µ,Σ)

implies

m ∼ N (Aµ,AΣAT ).

Special case: When Σ = σ2I and A is an orthonormal ma-
trix (e.g. Fourier or wavelet transform), then m corresponds to
independent noise in the transform coefficients.



Signal noise Signal histogram 

Coefficient noise Coefficient histogram 



Denoising is about developing a function of the data, �f(y),
which, on average, will be close to f .

When the noise is stochastic, then �f(y) is also stochastic.

We can measure closeness via the “mean squared error”:

MSE
�
= E

�
�f − �f(y)�22

�
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Hence, the MSE can be decomposed into two sources of error: bias and

variance.

Let’s look at a simple example… 



Consider removing noise by 
“smoothing” the image; i.e. 
convolve with a Gaussian blur. 

What is the right blur radius? 

vs. 
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Can sparsity give us low bias AND low variance? 



Let us decompose our noisy signal

y = f + n

in an orthonormal basis {ψi}Ni=1:

�y,ψi�� �� �
ζi

= �f,ψi�� �� �
θi

+ �n,ψi�� �� �
ηi

So that

y =
N�

i=1

ζiψi f =
N�

i=1

θiψi n =
N�

i=1

ηiψi

What do we know about the distribution of the ηi’s?



In the following discussion, we will estimate the signal f by
estimating each coefficient θi = �f,ψi� individually and com-
puting the reconstruction

�f =
N�

i=1

�θiψi

where �θi = �θ(y) is our estimate of θi.



Consider an estimator of the form

�f =
N�

i=1

αi�y,ψi�ψi, αi ∈ R;

i.e. �θi = αi�y,ψi�. The MSE is

E
�
�f − �f�22

�
= E

�
�θ − �θ�22

�
=

N�

i=1

E
�
(θi − �θi)2

�
.

Consider an estimator which selects the most important coeffi-
cients; i.e. restrict αi ∈ {0,1}. Minimizing the MSE with respect
to {αi}Ni=1 yields the optimal coefficient selection

αi =

�
1, |θi| ≥ σ

0, |θi| < σ

The problem is that θ is unknown, so this ideal coefficient atten-
uation is not practical.



The MSE of the ideal coefficient selection estimator is

MSEs =
N�

i=1

min(|θi|2,σ2)

=
�

i:|θi|<σ

min(|θi|2,σ2) +
�

i:|θi|≥σ

min(|θi|2,σ2)

=
�

i:|θi|<σ

|θi|2 +
�

i:|θi|≥σ

σ2

Let K be the number of coefficients satisfying |θi| ≥ σ, and recall
our discussion of K-term approximations of the form

fK =
�

i:|θi|≥σ

θiψi so f − fK =
�

i:|θi|<σ

θiψi.



The MSE of the ideal selection rule is then

MSEs = E
�
�f − �f�22

�
= �f − fK�22 +Kσ2.

This MSE is small if and only if both terms
above are small – i.e. if K is small and fK

is a good approximation to f .

Approximation error 
≈ bias 

Estimation error 
≈ variance 
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Ideal coefficient selection is also im-

practical. However, we can threshold

the noisy coefficients to approximate

the ideal coefficient selection. In par-

ticular, let

�f =
N�

i=1
δ(H)
T

(ζi)ψi

where δ(H)
T

is a “hard” threshold func-

tion

δ(H)
T

(z) =





z, |z| > T

0, |z| ≤ T

and T is the threshold level. Keep large coefficients, 
kill small coefficients 



This hard-threshold estimator is equivalent to performing the

optimization

�θ = argmin
θ

�ζ − θ�22 + τ�θ�0

where τ is a “regularization parameter” which depends on T

and

�θ�0
�
= #{i : |θ|i �= 0}.

One way to think of this optimization is that we want to find the

vector θ which (a) is a good fit to the data and (b) is sparse.



To see this, first consider the following question: what value of
θ minimizes

min
θ:�θ�0=K

�ζ − θ�22?

Now note that we can re-write our optimization as follows:

�K = argmin
K

�

min
θ:�θ�0=K

�ζ − θ�22 + τK

�

�θ = argmin
θ:�θ�0= �K

�ζ − θ�22

Thus solving the �0-optimization problem in this denoising con-
text amounts to hard thresholding.



If the threshold T = σ
√
2 loge N , then the MSE of the hard

thresholding estimator satisfies

MSE ≤ (2 loge N +1)(σ2 + MSEs).

That is, the performance of the practical
hard thresholding estimator is within a
logN factor of the ideal coefficient

selection estimator.



So what does sparsity buy us? 



We have seen the following:

MSE ≤ (2 loge N +1)(σ2 + MSEs)

≤ (2 loge N +1)(�f − fK�22 + (K +1)σ2).

When f is K-sparse, we have

MSE
N

=
�f − �f�22

N
= O

�
K logN

N

�
.

Recall that if we had a parametric signal with K parameters,
our MSE would behave like K/N – so even though this is non-
parametric estimation, sparsity leads to near-parametric per-
formance!



When f is compressible, so (1/N)�f − fK�22 ≤ K−β, we
have

�f − �f�22
N

= O

�

[logN ]

�

K
−β +

Kσ2

N

��

.

Given N and σ2, the optimal sparsity level (which minimizes
the MSE) is K∗ = (N/σ2)1/(β+1), yielding

�f − �f�22
N

= O

�
[logN ]

�
σ2/N

�β/(β+1)
�
.



/N
 

For more compressible signals, the MSE decays more 
quickly with the amount of data or the signal-to-noise ratio. 



Hard-thresholding and �0-regularization work well for our noise

removal problem, but the �0-regularizer creates computational

problems in related settings (e.g. inverse problems).

Consider instead a coefficient attenuation estimator, where we

let the αi’s take any values in [0,1].

Minimizing the MSE with respect to {αi}Ni=1 yields the optimal

coefficient attenuation

αi =
|θi|2

|θi|2 + σ2
⇒ MSEa =

N�

i=1

|θi|2σ2

|θi|2 + σ2
.



How are these related? 

MSEs =
N�

i=1
min(|θi|2,σ2) MSEa =

N�

i=1

|θi|2σ2

|θi|2 + σ2
.



Ideal coefficient attenuation is also im-

practical. However, we can threshold

the noisy coefficients to approximate

the ideal coefficient attenuation. In

particular, let

�f =
N�

i=1
δ(S)T (ζi)ψi

where δ(S)T is a “soft” threshold func-

tion

δ(S)T (z) =
(|z|− T )+

|z|
z

where (z)+ =





z z ≥ 0

0 z < 0
and T is

the threshold level.



This soft-threshold estimator is equivalent to performing the

optimization

�θ = argmin
θ

�ζ − θ�22 + τ�θ�1

where τ is a “regularization parameter” which depends on σ

and

�θ�1
�
=

N�

i=1
|θ|1.

One way to think of this optimization is that we want to find the

vector θ which (a) is a good fit to the data and (b) is nearly
sparse.

This is a convex optimization problem that generalizes well to

inverse problems.



To see this, first re-write our objective as

�ζ − θ�22 + τ�θ�1 ≡
N�

i=1

(ζi − θi)2 + τ |θi|.

Thus we can solve this problem independently for each index i. Consider

ζi ≥ 0; then we know �θi ≥ 0. Compute the derivative and set it equal to

zero:

d

dθi
(ζi − θi)2 + τθi = −2ζi +2θi + τ = 0

⇒ �θi = (ζi − τ/2)+

Now consider ζi ≤ 0, so that �θi ≤ 0.

d

dθi
(ζi − θi)2 − τθi = −2ζi +2θi − τ = 0

⇒ �θi = −(−ζi − τ/2)+
Overall this gives us the soft thresholding function:

�θi =
(|ζi|− τ/2)+

|ζi|
ζi.



Let’s see it in action! 
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A cute example 



p breakpoints,
N samples



Break signal into
m equi-sized pieces,
each with N/m sam-
ples. Compute sam-
ple average on each
piece.



p of the m pieces will have a breakpoint. The error in

these pieces will be O(1/m) regardless of how much

data we have.

The remaining m−p pieces will not have a breakpoint,

and the error of estimating a constant on each piece

is O(1/N).

The total error is then MSE = O(p/m)+O((m− p)/N).

Optimizing over m we find that m∗ ≈
√
Np, giving us

the total error

MSElinear

N
= O

��
p/N

�



An oracle tells us
where the p break-
points are, so we
just have to esti-
mate the constant
level on each in-
terval.



None of the p+1 pieces have a breakpoint. The error
of estimating a constant on each piece is O(1/N).

The total error is then

MSEoracle

N
= O

�
p

N

�



A piecewise constant signal is

p logN -sparse in the Haar wavelet basis.

Ideal coefficient selection would give us

MSEs = O(σ2p logN)

Practical coefficient selection would give us

MSEsparse

N
= O

�
p log2N

N

�







Generalizations 



•  We saw that our error had to main components: 
approximation error and estimation error 

•  We can think of this as follows: to estimate a sparse signal, 
we need to perform two tasks: 

•  Figure out which coefficients are significant, giving ourselves an 
accurate sparse approximation 

•  Computing the values of those coefficients from noisy or corrupted 
data. 



•  Similar tradeoffs appear in many contexts. 
•  Classification: find sparse representation of features, then do 

classification in space of significant coefficients 

•  Compression: find sparse approximation, encode indices and values 
of sparse coefficients 

•  Missing data: fill in missing values so result is sparse and fits data 

•  Distributed processing: instead of communicating all observations, just 
communicate sparse coefficients 

•  This lets us sidestep the 

 “curse of dimensionality” 



Estimation: Choose estimate �θ where

�θ = argmin
θ

�y −Ψθ�22� �� �
fit to data

+ τ�θ�1� �� �
sparsity

Compression: Encode approximation �θ where

�θ = argmin
θ

�y −Ψθ�22� �� �
fit to original

+ τ�θ�1� �� �
≈ file size

Distributed estimation: Transmit estimate �θ where

�θ = argmin
θ

�y −Ψθ�22� �� �
fit to data at

different sensors

+ τ�θ�1� �� �
≈ communication
power/bandwidth

Inverse problems: Measure y = Af + n, choose estimate �θ
where

�θ = argmin
θ

�y −AΨθ�22� �� �
fit to data

+ τ�θ�1� �� �
sparsity



Com
press
ion 

Similar concepts arise in data compression. Imagine we have

an image with N pixels.

One option is to write each pixel value to a file. This is what a

bitmap scheme does.

Another option is to transform the image into another domain

(e.g. wavelet) in which it is sparse. Then we only need to store

(a) the values and (b) the indices of the non-zero coefficients.

This is what JPEG and JPEG-2000 do.

Since sparse images have few non-zero coefficients, part (a)

requires relatively little storage. Determining methods for en-

coding part (b) can be more challenging, and significant re-

search has been devoted to this topic.



•  We saw we can use sparsity to estimate signals in noise. 
•  This all assumed a very direct observation model, though. 
•  If we know our signal is sparse, are there better ways to 

sample it? 
•  Can we use sparsity to reduce the amount of data we need to 

collect? 


