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Sensing systems limited by constraints: physical size, time, cost, energy  

Reduce the number of measurements needed for reconstruction 
⇓

Higher accuracy data subject to constraints 



Original Scene Downsampled Reconstruction from 
¼ as many 

measurements 



Original Scene Downsampled Reconstruction from 
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measurements 





Each observation is a measurement of ONE pixel 

+=

+=

y f n



Each observation is a measurement of ONE pixel 
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y1 = �f, I1� =

y2 = �f, I2� =

yN = �f, IN� =



Images are compressible 
⇓ 

Measuring all pixels inherently wasteful 



� �,=

Measure sum of half the pixels 
⇓ 

Narrow down star location 

y1 = �f, r1�



Each observation is a measurement of half the pixels 
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y1 = �f, r1� =

y2 = �f, r2� =

yM = �f, rM� =
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These ideas extend to multiple stars  
and random combinations of pixels 

y1 = �f, r1� =

y2 = �f, r2� =

yM = �f, rM� =



Observations 

All k 
random 

projections 
True 

image Noise 

y = Rf + n
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System is underdetermined:  
infinitely many solutions 
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Assume f is K-sparse or β-compressible in some basis Ψ.
That is,

f =
N�

i=1
θiψi

and either

�θ�0 ≤ K

or

�f − fK� � K−β

where fK is the best K-term approximation of f in the basis
Ψ.
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Combining y = Rf + n with f = Ψθ:

θ

y

n

RΨ����
A



�θ = argmin
θ

�y −RΨθ�22� �� �
data fit

+ τ�θ�1� �� �
sparsity

�f = Ψ�θ

Key theory: If R meets certain conditions
and f is sparse or compressible in Ψ,

then �f will be very accurate even when the
number of measurements is small relative

to N .



CONVENTIONAL SENSING 

Noisy Image Random Projections 
Smaller 

Less Data 
Cheaper 

COMPRESSED SENSING 



Candes and Tao (2006) 

Definition: Restricted Isometry Property. The matrix A satis-
fies the Restricted Isometry Property of order K with parame-
ter δK ∈ [0,1) if

(1− δK)�θ�22 ≤ �Aθ�22 ≤ (1 + δK)�θ�22
holds simultaneously for all K-sparse vectors θ. Matrices with
this property are denoted RIP(K, δK).



For example, if the entries of A are independent and identically
distributed according to

Ai,j ∼ N
�
0,

1

M

�
or Ai,j =





M−1/2 with probability 1/2

−M−1/2 with probability 1/2
,

then A satisfies RIP(K, δK) with high probability for any inte-
ger K = O(M/ logN).



Matrices which satisfy the RIP combined with sparse recovery algorithms
are guaranteed to yield accurate estimates of the underlying function f , as
specified by the following theorem.

Theorem: Noisy Sparse Recovery with RIP Matrices. Let A be a matrix
satisfying RIP(2K, δ2K) with δ2K <

√
2 − 1, and let y = Aθ + n be a

vector of noisy observations of any signal θ ∈ RN , where the n is a noise
or error term with �n�2 ≤ �. Let θK be the best K-sparse approximation of
θ. Then the estimate

�θ = argmin
θ

�θ�1 subject to �y −Aθ�2 ≤ �

obeys

�θ − �θ�2 ≤ C1,K�+ C2,K
�θ − θK�1√

K
,

where C1,K and C2,K are constants which depend on K but not on N or
M .

Candes (2006) 



•  This estimate can be computed in a variety of ways. 
•  Many off-the-shelf optimization software packages are 

unsuitable  
•  Can’t handle large N 
•  Our objective isn’t differentiable 
•  Don’t exploit fast transforms (e.g. Fourier and wavelet) 

•  Gradient projection methods  
•  Introduce additional variables and recast problem as constrained 

optimization with differentiable objective 
•  Projection onto constraint set can be done with thresholding 
•  More robust to noise 

•  Orthogonal matching pursuits (OMP)  
•  Start with estimate = 0 
•  Greedily choose elements of estimate to have non-zero magnitude by 

iteratively processing residual errors  
•  Very fast when little noise 

�θ = argmin
�θ

�y −A�θ�22 + τ��θ�1.



Our objective is

�θ = argmin
�θ

�y −A�θ�22 + τ��θ�1.

The first term can be re-written as

yTy − 2�θTATy + �θTATA�θ

and its gradient is

−2AT (y −A�θ).

This suggests a simple strategy for computing �θ: start with an

initial estimate �θ, update it by adding a step in the negative

gradient direction, then apply thresholding!



Start with some initial estimate �θ(0); see how well it fits y:

y −A�θ(0).

Use this residual to update the initial estimate:

�θ(0) +AT
�
y −A�θ(0)

�
.

Impose sparsity via thresholding this estimate:

�θ(1) = threshold
�
�θ(0) +AT

�
y −A�θ(0)

��

Repeat until �y −A�θ(i)� is small:

�θ(i+1) = threshold
�
�θ(i) +AT

�
y −A�θ(i)

��
.





Original θ, with K = 15 f (blue) and y (red
circles); M = 30

perfect reconstruction!



Matrices which satisfy the RIP combined with sparse recovery algorithms
are guaranteed to yield accurate estimates of the underlying function f , as
specified by the following theorem.

Theorem: Noisy Sparse Recovery with RIP Matrices. Let A be a matrix
satisfying RIP(2K, δ2K) with δ2K <

√
2 − 1, and let y = Aθ + n be a

vector of noisy observations of any signal θ ∈ RN , where the n is a noise
or error term with �n�2 ≤ �. Let θK be the best K-sparse approximation of
θ. Then the estimate

�θ = argmin
θ

�θ�1 subject to �y −Aθ�2 ≤ �

obeys

�θ − �θ�2 ≤ C1,K�+ C2,K
�θ − θK�1√

K
,

where C1,K and C2,K are constants which depend on K but not on N or
M .

Candes (2006), Candes, Romberg & Tao (2006) 



Let h �
= �θ − θ be our error vector.

Let T0 be the indicies of the largest K elements of θ, T1 be the indicies
of the largest K elements of hTc

0
, T2 be the indicies of the next K largest

elements of hTc
0
, and so on. For a vector x, let xTj

be defined via

xTj,i
�
=

�
xi, i ∈ Tj

0, i /∈ Tj
.

Then h = hT0
+ hT1

+ hT2
+ . . .

There are two main steps to our proof:

��θ − θ�2 = �h�2 ≤ �hT0∪T1
�2 + �h(T0∪T1)c�2

(STEP 1) ≤ C�hT0∪T1
�2 + CK−1/2�θ − θK�1

(STEP 2) ≤ C�+ CK−1/2�θ − θK�1

C will represent constants which may depend on K but not N or M .



�h(T0∪T1)c�2 =

������

�

j≥2

hTj

������
2

≤
�

j≥2

�hTj
�2 (remember me later!!)

≤
�

j≥2

K1/2�hTj
�∞

≤
�

j≥2

K1/2�hTj−1
�1/K

= K−1/2 (�hT1
�1 + �hT2

�1 + . . .)

= K−1/2 �hTc
0
�1� �� �

how big??



First note

�θ�1 ≥ ��θ�1 = �θ + h�1
≥ �θT0

�1 − �hT0
�1 + �hTc

0
� − �θT c

0
�1

Rearranging terms we find

�hTc
0
�1 ≤ �hT0

�1 + 2�θT c
0
�1

= �hT0
�1 + 2�θ − θK�1

Putting everything together we have

�h(T0∪T1)c�2 ≤ K−1/2(�hT0
�1 + 2�θ − θK�1)

≤ �hT0∪T1
�2 + 2K−1/2�θ − θK�1

as desired for Step 1.



We now need to bound �hT0∪T1
�2. Note

(1− δ2K)�hT0∪T1
�22 ≤ �AhT0∪T1

�22
= �AhT0∪T1

, Ah� − �AhT0∪T1
,
�

j≥2

AhTj
�

For the first term

�AhT0∪T1
, Ah� ≤ �AhT0∪T1

�2�Ah�2
≤ (

�
1+ δ2K�hT0∪T1

�2)�A(�θ − θ)�2
≤ (

�
1+ δ2K�hT0∪T1

�2)(�A�θ − y�2 + �y −Aθ�2)
≤ (

�
1+ δ2K�hT0∪T1

�2)2�
The second term is bounded similarly by

−�AhT0∪T1
,
�

j≥2

AhTj
� ≤

√
2δ2K

�

j≥2

�hTj
�2�hT0∪T1

�2



Thus

(1− δ2K)�hT0∪T1
�22 ≤ �hT0∪T1

�2



2�
�

1+ δ2K +
√
2δ2K

�

j≥2

�hTj
�2





�hT0∪T1
�2 ≤ C�+ CK−1/2�θ − θK�1.

Putting it all together we have

��θ − θ�2 ≤ C�+ CK−1/2�θ − θK�1
as desired.



If we have no noise (� = 0) and our signal is K-sparse, then
we have

θ = �θ;

i.e., we can perfectly reconstruct the original signal!

In other words, the accuracy of the reconstruction
of a general image f from measurements collected
using a system which satisfies the RIP depends on
(a) the amount of noise present and (b) how well f
may be approximated by an image sparse in Ψ.
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Unsolvable; too little 
data or too little sparsity 

Solvable; sufficient data 
and sparsity 

Donoho and Tanner (2010) 



Consider the worst-case coherence of A ≡ RΨ. Formally, one denotes
the Gram matrix G

�
= ATA and let

µ(A)
�
= max

1≤i,j≤
i �=j

|�Gi,j�|

be the largest off-diagonal element of the Gram matrix. A good goal in
designing a sensing matrix is to therefore choose R and Ψ so that µ is as
close as possible to N−1/2.

Theorem: Noisy Sparse Recovery with Incoherent Matrices. Let y =
Aθ + n be a vector of noisy observations of any K-sparse signal θ ∈ RN ,
where K ≤ (µ(A)−1 + 1)/4 and the n is a noise or error term with
�n�2 ≤ �. Then our estimate obeys

�θ − �θ�22 ≤
4�2

1− µ(A)(4K − 1)
.

Tropp (2004), Donoho, Elad & Temlyakov (2006),  
Donoho & Huo (2001), Gilbert, Muthukrishnan & Strauss (2003) 



Sparse vector Projection vectors 

Signal is locally concentrated, measurements are 
global 

⇓ 
Each measurement contains a little information about 

each component 





•  What are the major open problems and areas of research? 

•  In what ways can these concepts be generalized to other 
problem domains?  


