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SENSORS, SENSORS EVERYWHERE




Sensing systems limited by constraints: physical size, time, cost, energy

Reduce the number of measurements needed for reconstruction

Higher accuracy data subject to constraints



Original Scene Downsampled Reconstruction from
Y4 as many
measurements
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CONVENTIONAL IMAGING

Each observation is a measurement of ONE pixel



CONVENTIONAL IMAGING
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Each observation is a measurement of ONE pixel



Images are compressible

U
Measuring all pixels inherently wasteful




NEW PARADIGM FOR SENSING

Yyl — <f7 T1>

Measure sum of half the pixels
U

Narrow down star location




NEW PARADIGM FOR SENSING
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Each observation is a measurement of half the pixels



NEW PARADIGM FOR SENSING

These ideas extend to multiple stars
and random combinations of pixels




NEW OBSERVATION MODEL

y=Rf+n
/

All £
random
Observations projections
}ﬁ_f*‘ Heala




ILL-POSED PROBLEM

System is underdetermined:
infinitely many solutions




SPARSITY

Assume f is K-sparse or S-compressible in some basis W.
That is,

N
f=> 01
i=1
and either
16]0 < K
or

\f = Fxll = K=°

where fi is the best K-term approximation of f in the basis
W,



SPARSITY




SPARSE INVERSE PROBLEM

Combining y = Rf + n with f = W@

%H.lllllll.l.ﬂ




COMPRESSED SENSING

data fit sparsity

Key theory: If R meets certain conditions
and f Is sparse or compressible in W,

then f will be very accurate even when the
number of measurements is small relative
to V.




CONVENTIONAL SENSING COMPRESSED SENSING

Random Projections
Smaller
Less Data
Cheaper

Noisy Imaqge
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RESTRICTED ISOMETRY PROPERTY

Definition: Restricted Isometry Property. The matrix A satis-
fies the Restricted Isometry Property of order K with parame-

ter 5 € [0, 1) if
(1 - I6115 < 1140115 < (1 4+ 55)116115

holds simultaneously for all K-sparse vectors 6. Matrices with
this property are denoted RIP(K, ).

Candes and Tao (2006)



RIP EXAMPLE

For example, if the entries of A are independent and identically
distributed according to

1 M~1/2  with probability
A--~N(0,—) A —
tJ M) O T {—Ml/2 with probability

then A satisfies RIP (K, ) with high probability for any inte-
ger K = 0O(M/log N).



SPARSE RECOVERY

Matrices which satisfy the RIP combined with sparse recovery algorithms
are guaranteed to yield accurate estimates of the underlying function f, as
specified by the following theorem.

Theorem: Noisy Sparse Recovery with RIP Matrices. Let A be a matrix
satisfying RIP(2K, d>x) with éoxr < vV2 — 1, and lety = A0 + n be a
vector of noisy observations of any signal § € R", where the n is a noise
or error term with ||n||> < e. Let 8k be the best K-sparse approximation of
6. Then the estimate

0 = arg min ||0]|1 subject to ||y — Af]||> < e
0

obeys
0 — Ok|l1
TR
where C'1 x and C5 i are constants which depend on K but not on N or
M.

|60 — é\HQ < Ch1 re+ CQ,K‘

Candes (2006)



ALGORITHMS 0 = argmin ||y — A6]13 4 7]0]|1.
0
® This estimate can be computed in a variety of ways.

®* Many off-the-shelf optimization software packages are
unsuitable
® Can’t handle large N
® Our objective isn’t differentiable
® Don’t exploit fast transforms (e.g. Fourier and wavelet)

® Gradient projection methods

® Introduce additional variables and recast problem as constrained
optimization with differentiable objective

® Projection onto constraint set can be done with thresholding
® More robust to noise

® Orthogonal matching pursuits (OMP)
¢ Start with estimate = 0

® Greedily choose elements of estimate to have non-zero magnitude by
iteratively processing residual errors

® Very fast when little noise



ITERATIVE HARD/SOFT THRESHOLDING

Our objective is

6 = arg min [ly — Af||3 + 7|6]|1.
7

The first term can be re-written as
yTy — 2§TATy + 0l AT A6
and its gradient is
—2AT (y — A0).

This suggests a simple strategy for computing f: start with an

~

Initial estimate 6, update it by adding a step in the negative
gradient direction, then apply thresholding!



ITERATIVE HARD/SOFT THRESHOLDING

Start with some initial estimate 6(0); see how well it fits y:

Y — A0

Use this residual to update the initial estimate:
9(0) 4 AT (y — Aé(o)) :

Impose sparsity via thresholding this estimate:

6(1) — threshold [§<0>

Repeat until ||y — A0(?)|| is small:

AT (y— A40(9)]

0011 = threshold 9 4 AT (y — A9))] .



EXAMPLE

Time domain f(t)

Frequency domain f(w)

Wn

||

Measure M samples
(red circles = samples)

|

5

K nonzero components

#{w: f(w) #£0} =K



EXAMPLE

| Il

L

Original 0, with K = 15

i ll

f (blue) and y (red
circles); M = 30

|

perfect reconstruction!



SPARSE RECOVERY

Matrices which satisfy the RIP combined with sparse recovery algorithms
are guaranteed to yield accurate estimates of the underlying function f, as
specified by the following theorem.

Theorem: Noisy Sparse Recovery with RIP Matrices. Let A be a matrix
satisfying RIP(2K, d>x) with éoxr < vV2 — 1, and lety = A0 + n be a
vector of noisy observations of any signal § € R", where the n is a noise
or error term with ||n||> < e. Let 8k be the best K-sparse approximation of
6. Then the estimate

0 = arg min ||0]|1 subject to ||y — Af]||> < e
0

obeys
0 — Ok|l1
TR
where C'1 x and C5 i are constants which depend on K but not on N or
M.

|60 — é\HQ < Ch1 re+ CQ,K‘

Candes (2006), Candes, Romberg & Tao (2006)



PROOF

Let h = 6 — 6 be our error vector.

Let To be the indicies of the largest K elements of 6, T be the indicies
of the largest K elements of Ay, T> be the indicies of the next K largest
elements of A7, and so on. For a vector z, let z7, be defined via

o Y Li, ) c 1}
o, Ty

Thenh:hTO+th—|—hT2—|—...

There are two main steps to our proof:

10 — 0l = ||hll2 < l|hnurnllz + [|Rnony |2
(STEP 1) < C|lhunll2 + CK Y210 — 6k ||2
(STEP 2) < Ce+ CK 20 — 0k||1

C will represent constants which may depend on K but not IV or M.



STEP 1

lh(rurll2 = Z hr,

j>2

2

< Z |hT|l2  (remember me later!!)
J=2
<Y KY?|hgle
j=2
<N EKY?||hg |1/ K
j=>2
=K 2 (|hnll + b lli + - )
LA nlli+ ...
=K 2 ||hr|x
N——

how big??




STEP 1

First note
10]]2 = [|0][1 = |6 + A2
> |07, |11 — lhn]l2 + IRzl — [[07g]]1
Rearranging terms we find
lhrellr < [[hzyll1 + 2|67 l1
= |lhnll1 + 2[|6 — O ||1
Putting everything together we have

Ihcrumyllz < K7V2(|[hg[ln 4 2[10 — 0k [11)
< hnunll2 + 2K 71216 — 0k ||
as desired for Step 1.



STEP 2

We now need to bound ||h7, 7, ||2. Note

(1 — 52K)HhT0UT1H% S ||Ah’ToUT1||§
= (Ahzur, Ah) — (Ahqur, > Ahr)

For the first term

<AhToUT17Ah> S ||‘AhToUT1||2||"4h’||2

< (V14 6ok

< (V14 dox

< (V14 dox

The second term is bounded similarly by

h1.uT,
ht.uT,

h1.uT,

j=2

DNAWG - 0)])
) (A0 — yll2 + [ly — A9])2)
2)2¢

—(Ahgun, Y Ahg) < V262k Y |lhgll2llhrnon 2

j=>2

j=2



STEP 2

Thus

(1 = 626 |hrun |13 < o ll2 | 26v/ 1+ b2k + V2021 Y |k

j=>2
Ihrur |l < Ce+ CK™Y2|10 — 0k |)1.
Putting it all together we have
10— 02 < Ce+ CK™Y2)10 — 0|1
as desired.



In other words, the accuracy of the reconstruction
of a general image f from measurements collected
using a system which satisfies the RIP depends on

(a) the amount of noise present and (b) how well f
may be approximated by an image sparse in W.

If we have no noise (e = 0) and our signal is K-sparse, then
we have

9:5;

l.e., we can perfectly reconstruct the original signal!



SOLVABILITY BOUNDARY

Unsolvable; too little
data or too little sparsity

0=K/M

Solvable: sufficient data
and sparsity

(0 0.2 0.4 0.6 0.8 1
0=M/N

Donoho and Tanner (2010)



ANOTHER PERSPECTIVE

Consider the worst-case coherence of A = RW. Formally, one denotes
the Gram matrix G = AT A and let

u(A) = max [(Gi )]
i7j

be the largest off-diagonal element of the Gram matrix. A good goal in
designing a sensing matrix is to therefore choose R and W so that u is as
close as possible to N—1/2.

Theorem: Noisy Sparse Recovery with Incoherent Matrices. Let y =
A6 + n be a vector of noisy observations of any K-sparse signal € RV,
where K < (u(A)~! 4+ 1)/4 and the n is a noise or error term with
|n||2 < e. Then our estimate obeys

_~ 42
10— 613 < : .
1— pu(A)(4K — 1)

Tropp (2004), Donoho, Elad & Temlyakov (2006),
Donoho & Huo (2001), Gilbert, Muthukrishnan & Strauss (2003)



INCOHERENT MEASUREMENT

Sparse vector Projection vectors

R e i G R P T TR TT S

AP NS M e A A
J_[—Lﬂ— Mnsuapriesmitsashoainghimy iy
WIS A N oY

Signal is locally concentrated, measurements are
global

U

Each measurement contains a little information about
each component




MAGNETIC RESONANCE IMAGING

N

Space domain Backprojection

N

sélmpllng CS [Candes,Romberg]

e / / T



NEXT TIME...

®* What are the major open problems and areas of research?

® In what ways can these concepts be generalized to other
problem domains?



