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Generalized Sparsity Measures



TOTAL VARIATION

Squared image gradient
® Sometimes an image’s gradient is sparse
® There is not a good orthonormal basis representation of this
® Total variation approximately measures the image gradient



TOTAL VARIATION
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This approach produces state-of-the-art results in many

settings, but there is relatively less theoretical support.

Rudin, Osher, Fatemi, 1992



STRUCTURED SPARSITY

® Until now, we have focused exclusively on sparsity, but have
not assumed any additional structure.

®* However, we often understand more about structure in
signals and images than spasity alone...

Baraniuk, Cevher, Duarte & Hegde, 2010



STRUCTURED SPARSITY

Baraniuk, Cevher, Duarte & Hegde, 2010



STRUCTURED SPARSITY

Baraniuk, Cevher, Duarte & Hegde, 2010



STRUCTURED SPARSITY RESULTS

Original image Standard CoSamP Structure-aware

PSNR = 19.9dB CoSamP
PSNR = 26.8dB

Baraniuk, Cevher, Duarte & Hegde, 2010



BLOCK SPARSITY

This rich image is not
especially sparse in

“usual” bases such as
a wavelet basis




BLOCK SPARSITY

It does contain quite a
bit of structure,
however. In particular,

many “patches” of
pixels appear
repeatedly throughout
the image...



BLOCK SPARSITY

We can think of these
patches as lying on a

low-dimensional
submanifold...




BLOCK SPARSITY

What if we could find a
basis (or, more
generally, dictionary)
for patches so that all

the patches are sparse
in that basis?



DICTIONARY LEARNING
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DICTIONARY LEARNING

First we extract all overlapping patches, {z;}:_,. Next we solve a matrix
factorization problem:
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e z; is the :th noisy patch
e D is the dictionary
e «; is the vector of dictionary coefficients for patch 2

Once we have the dictionary D, we can denoise each patch in the dictio-
nary (z; = Da;) and re-form the denoised image.

Elad & Aharon, 2006



DENOISING WITH LEARNING DICTIONARY
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DICTIONARY LEARNING

Denoising result

Mairal, Bach, Ponce, Sapiro & Zisserman, 2009



DICTIONARY LEARNING

Image completion example

Mairal, Sapiro & Elad, 2008



Compressive Coded Aperture Imaging



KEY CHALLENGES

S

® Fast methods to compute f

® Good sparsity models for
“natural” images
® Images with boundaries

® Images with texture

® Hyperspectral images

® Incorporating real-world constraints
® Photon noise
® Non-negative intensities

® Quantization effects

® Practical systems to measure compressed sensing data



CHALLENGE: BUILD IMAGING SYSTEMS THAT
EXPLOIT CS THEORY

* Projection (A) with randomly-drawn elements not realizable in most
optical systems:

 Light intensities cannot be negative
« Simultaneous projections require complex systems

* Individual random projections taken at each time step not suitable
for dynamic scenes

 Verifying the RIP for a particular matrix computationally intractable



CODED APERTURES

¢ Simple to build and to incorporate into practical, compact
optical designs

®* RIP satisfied with high probability using CS theory for
Toeplitz matrices

® Weaker theoretical guarantees



APERTURES

Signal




APERTU RES Aperture Observation

Small pinholes allow little light = dark observations.



APERTU RES Aperture Observation

Larger pinholes allow more light but leads to decrease
in resolution = blurry observations.




APERTU RES Aperture Observation
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Multiple small pinholes = overlapping observations.



CODED APERTURE IMAGING

(MoDIFIED UNIFORMLY REDUNDANT ARRAYS)
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Resolution restricted to size of detector

Gottesman and Fenimore (1989)



—> ? —> —>
r
Signal Coded aperture Low-resolution Reconstruction
(pattern of coded
small pinholes) observations
Observation model:
Apf

v =D(f *p) +e
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Downsampling Signal Coded Noise
Operator Aperture



COMPRESSIVE CODED APERTURE IMAGING

The sensing matrix Ap IS block circulant with circulant blocks:

h

Theorem: A mask pattern p can be designed such that the resulting
projection matrix Ap satisfies a (weakened) RIP with high probability.

Marcia and Willett (2008a)
Romberg (2009)



COMPRESSIVE CODED APERTURE:
VIDEO EXAMPLE

Uncoded observation
(1/16 as many pixels)

Ground truth

Coded observation
(1/16 as many pixels)

CS Reconstruction



RECONSTRUCTED VIDEO (FROM 2-FRAME METHOD)

Original Scene Downsampled Reconstruction from
coded observation



RECONSTRUCTIONS OF THE 25+ FRAME

Original Scene Downsampled Reconstruction from
coded observation



RECONSTRUCTED VIDEO (FROM 2-FRAME METHOD)
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Original Scene Original Scene

Downsampled

Reconstruction from
coded observation




RECONSTRUCTIONS OF THE 25+ FRAME
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Original Scene

Downsampled

Reconstruction from
coded observation




RECONSTRUCTED VIDEO (FROM 2-FRAME METHOD)

Original Scene

A A

Original Scene Downsampled Reconstruction from
coded observation




RECONSTRUCTIONS OF THE 25+ FRAME

Original Scene

Original Scene Downsampled Reconstruction from
coded observation



RECONSTRUCTED VIDEO (FROM 2-FRAME METHOD)

Original Scene

Original Scene

Downsampled

Reconstruction from
coded observation




RECONSTRUCTIONS OF THE 25+ FRAME

Original Scene

Original Scene

Downsampled
Reconstruction from
coded observation



Concluding remarks



SPARSITY AND COMPUTING

® Sparsity plays a critical role in processing high-dimensional
data
® Itincreases our robustness to noise
® |t facilitates efficient storage and transmission of data
® It allows us to fill in values of missing data
® It helps us circumvent the curse of dimensionality and achieve
accurate prediction performance
® Computational methods which exploit sparsity are
® Fast
¢ Sophisticated
® Fun!



Shameless plugs



Home Confirmed Presenters Technical Program Registration Venue

Duke Workshop on Sensing and Analysis of
High-Dimensional Data (SAHD)

The Duke University Workshop on
Sensing and Analysis of
High-Dimensional Data is planned for
f July 26-28, 2011. The meeting will be
i held at the Washington Duke Inn and
Golf Club, adjacent to the Duke
campus. The meeting is being
organized and hosted by the following
Duke faculty: David Brady, Robert
Calderbank, Lawrence Carin, Ingrid
Daubechies, David Dunson, Mauro
Maggioni and Rebecca Willett.
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Rebecca Willett

Assistant Professor, Duke University
Electrical and Computer Engineering

Publications Research Software Teaching

Research Interests

My research interests include network and imaging science with applications in medical imaging, wireless sensor networks, astronomy, and
social networks. One central theme of my research is data-starved inference for point processes -- the development of statistically robust
methods for analyzing discrete events, where the discrete events can range from photons hitting a detector in an imaging system to groups of
people meeting in a social network. When the number of observed events is very small, accurately extracting knowledge from this data is a
challenging task requiring the development of both new computational methods and novel theoretical analysis frameworks. This body of
research has led to important insights into the performance of compressed sensing in optical systems, tools for tracking dynamic meeting
patterns in social networks, predictions of future IED locations in Afghanistan, and novel sparse Poisson intensity reconstruction algorithms
for night vision and medical imaging.

Additional Activities

* Invited speaker at Workshop on Infusing Statistics and Engineering (WISE)

» 2011 Duke Workshop on Sensing and Analysis of High-Dimensional Data, July 26-28, co-organizer.
» Institute for Advanced Studies 2011 Program for Women and Mathematics Lecturer.

» Teaching course at 2011 Journées Statistiques du Sud.

» AFOSR Young Investigator Program recipient.

* NSF CAREER Award recipient.

» DARPA/IDA Computer Science Study Panel member; news article here. fro m m a n y

» Duke Center for Theoretical and Mathematical Sciences
backgrounds!

| hire students
and postdocs

» Duke Network Analysis Center
» Duke Center For Metamaterials And Integrated Plasmonics Executive Advisor Board
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Have a nice day
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