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Generalized Sparsity Measures 



•  Sometimes an image’s gradient is sparse 
•  There is not a good orthonormal basis representation of this 
•  Total variation approximately measures the image gradient 

Image Squared image gradient 
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This approach produces state-of-the-art results in many 
settings, but there is relatively less theoretical support. 

Rudin, Osher, Fatemi, 1992 



•  Until now, we have focused exclusively on sparsity, but have 
not assumed any additional structure. 

•  However, we often understand more about structure in 
signals and images than spasity alone… 

Baraniuk, Cevher, Duarte & Hegde, 2010 



Beyond Sparse Models 

Baraniuk, Cevher, Duarte & Hegde, 2010 



Beyond Sparse Models 

Baraniuk, Cevher, Duarte & Hegde, 2010 



Example: Natural Image Recovery
using Rooted Subtree Structure

Original image Standard CoSamP
PSNR = 19.9dB

Structure-aware 
CoSamP

PSNR = 26.8dB

[with Baraniuk, Cevher, Hegde]

Baraniuk, Cevher, Duarte & Hegde, 2010 



This rich image is not 
especially sparse in 

“usual” bases such as 
a wavelet basis 



It does contain quite a 
bit of structure, 

however. In particular, 
many “patches” of 

pixels appear 
repeatedly throughout 

the image… 



We can think of these 
patches as lying on a 

low-dimensional 
submanifold… 



What if we could find a 
basis (or, more 

generally, dictionary) 
for patches so that all 

the patches are sparse 
in that basis? 





First we extract all overlapping patches, {xi}Ni=1. Next we solve a matrix

factorization problem:

min
αi,D

N�

i=1

�xi −Dαi�22 + τ�αi�1

• xi is the ith noisy patch

• D is the dictionary

• αi is the vector of dictionary coefficients for patch i

Once we have the dictionary D, we can denoise each patch in the dictio-

nary (�xi = Dαi) and re-form the denoised image.

Elad & Aharon, 2006 





Mairal, Bach, Ponce, Sapiro & Zisserman, 2009 

The Dictionary Learning Problem
[Mairal, Bach, Ponce, Sapiro & Zisserman (’09)]

Denoising result



Mairal, Sapiro & Elad, 2008 

The Dictionary Learning Problem
[Mairal, Sapiro & Elad (’08)]

Image completion example



Compressive Coded Aperture Imaging 



•  Fast methods to compute    

•  Good sparsity models for  
“natural” images 
•  Images with boundaries 

•  Images with texture 

•  Hyperspectral images 

•  Incorporating real-world constraints  
•  Photon noise 

•  Non-negative intensities 

•  Quantization effects 

•  Practical systems to measure compressed sensing data 

�f



•  Projection (A) with randomly-drawn elements not realizable in most 
optical systems:  

•  Light intensities cannot be negative 

•  Simultaneous projections require complex systems 

•  Individual random projections taken at each time step not suitable 
for dynamic scenes 

•  Verifying the RIP for a particular matrix computationally intractable   



•  Simple to build and to incorporate into practical, compact 
optical designs 

•  RIP satisfied with high probability using CS theory for 
Toeplitz matrices 

•  Weaker theoretical guarantees 



Signal 



Small pinholes allow little light ⇒ dark observations. 

Signal 

Aperture Observation 



Larger pinholes allow more light but leads to decrease 
in resolution ⇒ blurry observations. 

Signal 

Aperture Observation 



Multiple small pinholes ⇒ overlapping observations. 

Signal 

Aperture Observation 



*	

 = 
Signal MURA pattern Coded  

observation 

   Resolution restricted to size of detector 

Gottesman and Fenimore (1989) 

*	

 = 
Coded 

observation 
MURA 

reconstruction 
pattern 

Recon-
struction 

O
bs

er
va

tio
n 

M
od

el
 

Li
ne

ar
 

R
ec

on
st

ru
ct

io
n 



Observation model: 

Downsampling 
Operator 

Signal Coded 
Aperture 

Noise 

? 
Signal Coded aperture 

(pattern of  
small pinholes) 

Low-resolution 
coded  

observations 

Reconstruction 

x =

Apf� �� �
D(f ∗ p)+�



The sensing matrix Ap is block circulant with circulant blocks:         

Theorem:  A mask pattern p can be designed such that the resulting 
projection matrix Ap satisfies a (weakened) RIP with high probability. 

Marcia and Willett (2008a) 
Romberg (2009) 



Ground truth 

CS Reconstruction 

Coded observation 
(1/16 as many pixels) 

Uncoded observation 
(1/16 as many pixels) Reconstruction 



Original Scene Downsampled Reconstruction from 
coded observation 
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Original Scene 

Downsampled 

Reconstruction from 
coded observation 

Original Scene 



Concluding remarks 



•  Sparsity plays a critical role in processing high-dimensional 
data 
•  It increases our robustness to noise 
•  It facilitates efficient storage and transmission of data 
•  It allows us to fill in values of missing data 
•  It helps us circumvent the curse of dimensionality and achieve 

accurate prediction performance 

•  Computational methods which exploit sparsity are 
•  Fast 
•  Sophisticated 
•  Fun! 



Shameless plugs 





I hire students 
and postdocs 
from many 
backgrounds! 



Have a nice day 



Have a nice day 


