Women in Mathematics

Advanced Course Review Session 3 : Homomorphic Encryption

24 mai 2018

Let $R=\mathbb{Z}[X] /\left\langle X^{n}+1\right\rangle$ and $R_{q}=R / q R=\mathbb{Z}_{q}[X] /\left\langle X^{n}+1\right\rangle$ and let χ be an error distribution over R_{q}. The parameters n, q and χ are public. An additional parameter of the scheme is an integer $D \in N$ that is related to the maximal degree of homomorphism allowed. Given two elements $r_{1}, r_{2} \in R_{q}^{D}$ we define

$$
\left\langle r_{1}, r_{2}\right\rangle=\sum_{i=0}^{n-1} r_{1 i} r_{2 i}
$$

. We define the norm of $r(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \in R_{q}$ as $\|r\|=\max \left|a_{i}\right|$.
The RLWE somewhat homomorphic symmetric encryption scheme with message space $R_{t}=$ $\mathbb{Z}_{t}[X] /\left\langle X^{n}+1\right\rangle$ works as follows :

1. Generate the secret key $s \in R_{q}$ (chosen uniformly at random) and let

$$
\mathbf{s}=\left(1, s, s^{2}, \ldots, s^{D}\right) \in R_{q}^{D+1}
$$

2. To encrypt a message m, sample $(a, b=a s+t e) \in R_{q}^{2}$, where $a \leftarrow R_{q}$ and $e \leftarrow \chi$. Compute

$$
c_{0}=b+m \in R_{q} \quad \text { and } \quad c_{1}=-a
$$

and output the ciphertext $c=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$. We say that $c \in R L W E(m, \beta)$, where β is the error bound.
3. The decryption algorithm, on input the secret key \mathbf{s}, outputs $m=\langle\mathbf{c}, \mathbf{s}\rangle(\bmod t)$.

Questions

1. Show that the ciphertexts are correctly decrypted, provided that $\beta \leq \frac{q}{2 t}$.
2. Given $\mathbf{c}_{1} \in R L W E\left(m_{1}, \beta\right)$ and $\mathbf{c}_{2} \in R L W E\left(m_{2}, \beta\right)$, show that $c_{1}+c_{2}$ is an encryption of $\left(m_{0}+m_{1}\right)(\bmod t)$ and compute its error bound.

In order to be able to multiply ciphertexts, we will consider a general form for our ciphertexts :

$$
\mathbf{c}=\left(c_{0}, \ldots, c_{d}\right) \in R_{q}^{d+1}
$$

with $d \leq D$.

We then decrypt by computing $m=\langle\mathbf{c}, \mathbf{s}\rangle(\bmod t)$, where $\mathbf{c}=\left(c_{0}, \ldots, c_{D}\right)$ is obtained from c by padding with 0 . Given two ciphertexts $\mathbf{c}=\left(c_{0}, \ldots, c_{d}\right)$ and $\mathbf{c}^{\prime}=\left(c_{0}^{\prime}, \ldots, c_{d^{\prime}}^{\prime}\right)$, we define

$$
\mathbf{c}_{m u l t}=\left(\hat{c}_{0}, \ldots, \hat{c}_{d+d^{\prime}}\right),
$$

where $\hat{c}_{i}=\sum_{i=k+j} c_{k} c_{j}^{\prime}$, for $i \in\left\{0, \ldots, d+d^{\prime}\right\}$.

Questions

3. Show that $c_{\text {mult }}$ decrypts to $m_{1} m_{2}$ and compute the error growth.
4. Let $s \in R$. Under the canonical embedding $\sigma(R) \subset \mathbb{Z}^{n}$, write down a matrix for the ideal lattice $\sigma(\langle s\rangle)$.
