
LECTURE 2

1. Semilinear Heat Equation

Consider next the semilinear heat equation

(?SL) ut = ∆u+ up on Rn × (0, T )

in the subcritical range of exponents 1 < p < n+2
n−2 . For simplicity we

will only consider nonnegative solutions u ≥ 0.

It provides a prototype for the blow up analysis of geometric flows.

In particular in neckpinches of solutions to the Ricci flow and Mean
Curvature flow.

Also in the characterization of rescaled limits as t → −∞ of ancient
solutions.

We will next discuss parabolic Liouville type results related to the blow
up analysis of solutions u > 0 to the semi-linear heat equation

(?SL) ut = ∆u+ up on Rn × (0, T )

in the subcritical range of exponents 1 < p < n+2
n−2 .

Definition 1.1. Assume that u(·, t) ∈ H1(Rn). We say that the solu-
tion u of (?SL) blows up in finite time T if

lim
t→T
‖u(·, t)‖L∞ = +∞.

Since p > 1 the solution of the ODE

du

dt
= up ⇐⇒ u−p du = dt ⇐⇒ d(u1−p)

1− p
= dt ⇐⇒ u1−p = T−(p−1)t

implies that

u(t) =
( 1

T − (p− 1)t

)1/(p−1)
where T = u1−p(0). Hence, u wants to blow up in finite time.

The equation obeys the following scaling: is u solves (?SL), then for
any α ∈ R \ {0} and β > 0, the function

û(x, t) = β u(αx, α2t)

is a solution of the same equation if

ût = ∆û+ ûp ⇐⇒ α2β ut = α2β∆u+ βpup ⇐⇒ α2β = βp

1
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from which we conclude that β = α
2
p−1 , i.e.

u solves (?SL) ⇐⇒ û(x, t) = α
2
p−1u(αx, α2t) solves (?SL).

1.1. The rescaled semi-linear heat equation. A point (a, T ) such
that lim(x,t)→(a,T ) u(x, t) = +∞ is called a singularity point.

Motivated by the scaling properties of the equation which we ob-
served above, at a singularity point (a, T ) we introduce the following
re-scaling:

Self-similar scaling at a singularity at (a, T ):

w(y, τ) = (T − t)
1
p−1 u(x, t), y =

x− a√
T − t

, τ = − log(T − t).

Theorem 1.2 (Giga - Kohn 1985). ‖w(τ)‖L∞(Rn) ≤ C, τ > − log T .

The rescaled solution satisfies the equation

(?) wτ = ∆w − 1

2
y · ∇w − w

p− 1
+ wp.

Objective: To analyze the blow up behavior of u one needs to under-
stand the long time behavior of w as τ → +∞.

This is closely related to the classification of bounded eternal solutions
of (?).

1.2. Eternal solutions of the semi-linear heat equation. Related
to the classification of singularities we pose the following problem:

Problem: Provide the classification of bounded positive eternal solu-
tions w of equation

(?) wτ = ∆w − 1

2
y · ∇w − w

p− 1
+ wp.

Eternal means that w(·, τ) is defined for τ ∈ (−∞,+∞).

Theorem 1.3 (Giga-Kohn). The only bounded steady states of (?)
are the constants:

w = 0 or w = κ, with κ := (p− 1)−
1

(p−1) .

Theorem 1.4 (Giga - Kohn ’87). limτ→±∞w(·, τ) = steady state.
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The proof of the theorem above heavily uses the monotonicity of the
following Lyapunov functional:

E(w) =
1

2

∫
|∇w|2dµ+

1

2(p− 1)

∫
w2dµ− 1

p+ 1

∫
wp+1dµ

where dµ = (4π)−
n
2 e−

|y|2
4 dy.

Theorem 1.5 (Giga - Kohn ’87). For p > 1, the following holds:

d

dτ
E(w(τ)) = −

∫
w2
τ dµ.

Limits as τ → ±∞: Using the above Lyapunov functional one shows:

Theorem 1.6 (Giga - Kohn ’87). The limits w±∞ := lims→±∞w(·, s)
are steady states of (?). Hence w±∞ = 0, κ.
Since E(w(s)) is decreasing, there are only three possibilities:

w±∞ = 0 or w±∞ = κ or w−∞ = κ and w+∞ = 0.

1.3. Classification of Eternal solutions. The following result holds
regarding the classification of eternal solutions to (?).

Theorem 1.7 ( Giga - Kohn ’87 and Merle - Zaag ’98 ). If w is bounded
positive eternal solution of (?) defined on Rn × (−∞,+∞), then

w = 0 or w = κ or w = φ(τ − τ0).

Easy case - Giga-Kohn ’89: If w±∞ = 0 or w±∞ = κ, then by the
monotonicity of the energy E(w(s)) one concludes that w ≡ 0 or w ≡ κ.

Difficult case - (Merle - Zaag): Classify the orbits w(·, τ) that connect
the two steady states:

lim
τ→−∞

w(·, τ) = κ and lim
τ→+∞

w(·, τ) = 0.
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1.4. The result by Merle-Zaag. Merle and Zaag proved the follow-
ing classification theorem.

Theorem 1.8 (Merle - Zaag 1998). If w(·, τ), −∞ ≤ τ ≤ +∞ is
a bounded eternal solution of (?) such that limτ→−∞w(·, τ) = κ and
limτ→+∞w(·, τ) = 0, then w(·, τ) is constant in space, hence the solu-
tion of the ODE

wτ = − w

p− 1
+ wp τ ∈ R

connecting the two steady states w−∞ = κ and w+∞ = 0. It follows

that w(τ) = φ(τ − τ0) with φ(τ) = κ (1 + eτ )−
1

(p−1) .

Idea of the Proof: We will next discuss the main idea due to Merle-Zaag
in the proof of the classification Theorem. They linearize the equation
around the constant w−∞ = κ, that is set v := w − κ. Then,

vτ = Lv + f(v)

where L is the linearized operator around the constant κ and is give
by

L := ∆v − y

2
· ∇v + v.

The error term is given by

f(v) := (v + κ)p − κp − p κp−1 v
and it is small as v → 0.
The operator L is a well studied operator with known spectral proper-
ties, summarized in the next section.

1.5. The linear operator L. The operator L is self adjoint in the
Hilbert space H := L2(R, e−|y|2/4dy). We introduce the norm and the
inner product on H by

‖f‖2ρ =

∫
R
f(y)2e−|y|

2/4 dy, 〈f, g〉ρ =

∫
R
f(y)g(y)e−|y|

2/4 dy.

Spectrum of L:

specL =
{

1− m

2
|m ∈ N

}
.

In particular we have the following for the eigenvalues of L:

• Positive: λ2 = 1 (multiplicity 1- eigenfunction ϕ2 ≡ 1 ),
λ1 = 1/2 (multiplicity n).

• Zero: λ0 = 0 (multiplicity n(n+1)
2

).

• Negative: Countable many λ−1, λ−2, · · ·
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Eigenfunctions of L: They are derived from Hermite polynomials.

1.6. Dominant mode as τ → −∞. Merle-Zaag decompose the func-
tion v(·, τ) for τ � −1 onto the eigenspaces of L , that is they express

v = V +
2 + V +

1 + V0 + V −

where

• V +
2 is the component corresponding to eigenvalue λ2 = 1

• V +
1 is the component corresponding to eigenvalue λ1 = 1/2

• V 0 is the component corresponding to eigenvalue λ0 = 0

• V −2 is the component corresponding to negative (stable)
eigenvalues λ−1, λ−2, · · ·

They show that: as τ → −∞ one of the positive modes or the zero
mode prevail.

Proposition 1.9 (Merle - Zaag 1998). As τ → −∞, one of the three
holds:

(i) |V +
2 (τ)|+ ‖V +

1 (τ)‖L2
ρ

+ ‖V −(τ)‖L2
ρ

= o(‖V 0(τ)‖L2
ρ
),

(ii) |V +
2 (τ)|+ ‖V 0(τ)‖L2

ρ
+ ‖V −(τ)‖L2

ρ
= o(‖V +

1 (τ)‖L2
ρ
),

(iii) ‖V +
1 (τ)‖L2

ρ
+ ‖V0‖L2

ρ
(τ) + ‖V −(τ)‖L2

ρ
= o(|V +

2 (τ)|)

i.e. as τ → −∞ one of the positive modes or the zero mode prevail.

1.7. The ODE lemma. A key ingredient in showing this proposition
is the following ODE Lemma:

Lemma 1.10 (ODE Lemma). Let X0(τ), X−(τ) and X+(τ) be abso-
lutely continuous, real-valued functions that are nonnegative and satisfy

• (X0, X−, X+)(τ)→ 0 as τ → −∞
• X0(τ) +X−(τ) +X+(τ) 6= 0 for all τ ≤ τ0
• ∀ε > 0, ∃τε ∈ R such that ∀τ ≤ τε, and

(1.1)

Ẋ+ ≥ c0X+ − ε(X0 +X−)

|Ẋ0| ≤ ε(X0 +X− +X+)

Ẋ− ≤ −c0X− + ε(X0 +X+)


Then either X0 +X− = o(X+) or X− +X+ = o(X0) as τ → −∞.
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Remark: You apply the ODE lemma on V +(τ), V 0(τ), V −(τ). To do so
you need to show that the inequalities in the above lemma are satisfied
by V +(τ), V 0(τ), V −(τ). This follows by the spectral properties of L
and energy estimates on the equation

vτ = Lv + f(v)

where L := ∆v − y
2
· ∇v + v and the error term is given by

f(v) := (v + κ)p − κp − p κp−1 v.

1.8. Dominant mode as τ → −∞.

Proposition 1.11 (Merle - Zaag 1998). As τ → −∞, we have

|V +
1 (τ)|+ ‖V0‖L2

ρ
(τ) + ‖V −(τ)‖L2

ρ
= o(‖V +

2 (τ)‖L2
ρ
)

where we recall that V +
2 (·, τ) is the projection of the solution v(·, τ) to

the eigenspace 〈ϕ2(y)〉 corresponding to the eigenvalue λ2 = 1, where
ϕ(y) ≡ 1. . This means that

v(·, τ) = V +
2 (τ) + l.o.t. = a(τ) · ϕ2(y) + l.o.t. = a(τ) + l.o.t..

Note that: V +
2 (τ) is independent of the spatial variable !!

1.9. The conclusion of the main result. Using the last proposition
namely that

v(·, τ) = a(τ) · 1 + l.o.t.

Merle-Zaag then show that

v(·, τ) ≡ V +
2 (τ) ≡ a(τ).

i.e. v(·, τ) is independent of the spatial variable y.

Proposition 1.12. The function v(·, τ) is independent of the spatial
variable y, i.e.

v(·, τ) ≡ a(τ), ∀τ .
Hence, the same holds for w := v + κ.

They deduce that w(·, τ) = ϕ(τ), i.e. a solution of the ODE

wτ = − w

p− 1
+ wp τ ∈ R.

Solving this ODE gives w(τ) = κ (1 + C eτ )−
1

(p−1) hence

w(τ) = φ(τ − τ0), with φ(τ) = κ (1 + eτ )−
1

(p−1) .

Note: Their proof is rather complicated !!!



LECTURE 2 7

Jointly with Sigurd Angenent and Natasa Sesum we have recently
applied similar techniques to geometric flows, in particular to the n-
dimensional Mean curvature flow and 3-dimensional Ricci flow.


