
CURVE SHORTENING FLOW

1. Introduction

We consider an ancient embedded solution F : Γt → R2 of the Curve
shortening flow (CSF)

(1.1)
∂F

∂t
= −κ ν

with κ the curvature of the curve and ν the outer normal.

Contracting circles: Circles have constant curvature and they contract
by constant speed. The equation says that if r(r) denotes the radius
of the circle, then

dr(t)

dt
= −κ(t) = − 1

r(t)
.

Solving this equation for r(t) gives

r(t) =
√

2(T − t), where r(0) =
√

2T .

Also,

κ(t) =
1√

2(T − t)
.

If you assume that the curve is written as a graph y = f(x, t), then
f satisfies the quasilinear equation

ft =
fxx

1 + f 2
x

.

Grim Reaper Solution:

f(x, t) = t+ log sec x, x ∈ (−π
2
,
π

2
).
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1.1. Results. Gage and Hamilton [5] that if Γ0 is a convex curve em-
bedded in R2, then equation (1.1) shrinks Γt to a point. In addition,
the curve remains convex and becomes asymptotically circular close to
its extinction time.

Grayson: studied the evolution of non-convex embedded curves under
(1.1). He proved that if Γ0 is any embedded curve in R2, the solution
Γt does not develop any singularities before it becomes strictly convex.

1.2. Evolution equations. The evolution for the curvature κ of Γt is
given by

(1.2) κt = κss + κ3

which is a strictly parabolic equation.

Let θ be the angle between the tangent vector and the x axis. For
convex curves we can use the angle θ as a parameter. It has been
computed in [5] that

(1.3) κt = κ2 κθθ + κ3.

It turns out that the evolution of the family Γt is completely described
by the evolution (1.3) of the curvature κ. Notice that κ is 2π-periodic.

Gage and Hamilton observed that a positive 2π periodic function
represents the curvature function of a simple closed strictly convex C2

plane curve if and only if

(1.4)

∫ 2π

0

cos θ

κ(θ)
dθ =

∫ 2π

0

sin θ

κ(θ)
dθ = 0.

Our goal is to study ancient compact and convex solutions of the
CSF. We will assume from now on that Γt is an ancient solution of the
curve shortening flow defined on (−∞, T ). We will also assume that
our extinction time T = 0.

It is natural to consider the pressure function

p := κ2

which evolves by

(1.5) pt = p pθθ −
1

2
p2θ + 2 p2.



CURVE SHORTENING FLOW 3

We have already seen that the ancient solution to (1.3) defined by

p(θ, t) =
1

2(−t)
corresponds to a family of contracting circles. This solution is of type
I and a contracting self-similar solutions.

S. Angenent showed the existence of another example of ancient com-
pact solutions which are given by

(1.6) p(θ, t) = λ(
1

1− e2λt
− sin2(θ + γ))

where λ > 0 and γ is a fixed angle. They turn out to be type II ancient
solutions.

In this lecture we prove the following classification of ancient convex
solutions to the curve shortening flow.

Theorem 1.1 (D., Hamilton, Sesum). Let p(θ, t) = κ2(θ, t) be an
ancient solution to (1.5) defining an ancient convex solution to CSF.
Then,

i. either p(θ, t) = 1
(−2t) , which corresponds to contracting circles,

or
ii. p(θ, t) = λ( 1

1−e2λt − sin2(θ + γ)), for two parameters λ > 0 and
γ, which corresponds to the Angenent ovals.

2. Monotonicity formula

We will prove the theorem by introducing a monotone functional
along the flow. Denote by

α(θ, t) := pθ(θ, t).

By using (1.5) it easily follows that

(2.1) αt = p (αθθ + 4α).

We introduce the functional

I(α) =

∫ 2π

0

(α2
θ − 4α2) dθ.

The following lemma shows the monotonicity of I(α) in time.

Lemma 2.1. I(α(t)) is decreasing along the flow (2.1). Moreover,

d

dt
I(α(t)) = −2

∫ 2π

0

α2
t

p
dθ.
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Proof. We compute

d

dt
I(α(t)) =

∫ 2π

0

(2αθαθt − 8ααt) dθ

= −
∫ 2π

0

2αθθαt dθ − 8

∫ 2π

0

ααt dθ

=

∫ 2π

0

2(αt − 4αp)αt
p

dθ − 8

∫ 2π

0

ααt dθ (αt = p(αθθ + 4α)

= −2

∫ 2π

0

α2
t

p
dθ.

�

An easy computation shows that I(α(t)) ≡ 0 on both the circles and
the Angenent ovals which motivates the following:

3. Key step and proof of the Theorem

Proposition 3.1 (Key step). For any ancient convex solution to (1.5),
we have

I(α(t)) ≡ 0, for all t ∈ (−∞, 0).

Proof of Theorem 1.1. By Proposition 3.1 we have

I(α(t)) ≡ 0, for all t < 0.

Lemma 2.1 implies that αt ≡ 0, that is,

p (αθθ + 4α) = 0

which means (since p > 0) that

αθθ + 4α = 0

and therefore

α(θ, t) = a0(t) cos 2(θ + γ(t)) + b0(t) sin 2(θ + γ(t))

for some functions in time a0(t), b0(t) and γ(t).

Since α = pθ, by integrating in θ we obtain

(3.1) p(θ, t) = a(t) sin 2(θ + γ(t)) + b(t) cos 2(θ + γ(t)) + c(t)

for a(t) = a0(t)
2

, b(t) = − b0(t)
2

and another function in time c(t).

In the case where a(t) ≡ 0 and b(t) ≡ 0, you have that p(θ, t) = c(t)
and you recover the contracting spheres.



CURVE SHORTENING FLOW 5

In the other case, if we plug p(θ, t) back to equation (1.5) and you
deduce after some straight-forward calculations that

p(θ, t) = λ(
1

1− e2λt
− sin2(θ + γ)).

�

4. Proof of the key step

We will now outline the proof of the key stop which says that

I(α(t)) ≡ 0.

The proof will be given in two steps.

Step 1: lim inft→−∞ I(α(t)) ≤ 0.

Step 2: limt→0 I(α(t)) = 0.

Once we know these two steps, the monotonicity

d

dt
I(α(t)) ≤ 0

will then readily imply that I(α(t)) ≡ 0, for all t < 0, as desired.

The proof of Step 2 uses the Gage-Hamilton result says that as t→ 0
the solution becomes more and more circular.

Let us state a bit more explicitly result by Gage and Hamilton in
[5]. The curvature satisfies

κt = κ2κθθ + κ3.

Consider the rescaled curvature κ̃ is defined by

(4.1) κ̃(θ, τ) = k(θ, t)
√
−2t, with τ = −1

2
log(−t).

Theorem 4.1 (Gage, Hamilton). If Γ0 is a closed convex curve em-
bedded in the plane R2, the curve shortening flow shrinks Γt to a point
in a circular manner. Moreover, for any η ∈ (0, 1) and m ≥ 1 we have

(4.2) |κ̃− 1| ≤ C(η) e−2ητ , |∂
mκ̃

∂θm
| ≤ Cm(η) e−2ητ

for τ � 1.

This means that as τ → +∞, κ̃θ → 0 and p̃θ → 0, p̃ := κ̃2. By
refining the Gage-Hamilton estimate we conclude that α := pθ

I(α) =

∫ 2π

0

(α2
θ − 4α2) dθ ≡ 0.
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4.1. Proof Step 1: lim inft→−∞ I(α(t)) ≤ 0.

Proof. On an ancient solution we have kt ≥ 0 which gives pt ≥ 0.
Hence, p(·, t) ≤ C <∞, for all t < −1 < 0.

If we differentiate (1.5) in θ we get

(4.3) (pθ)t = p(pθ)θθ + 4ppθ

which implies
1

2p
(p2θ)t = pθ(pθ)θθ + 4p2θ

and therefore (
p2θ
2p

)
t

=
(p2θ)t
2p
− p2θ pt

2p2
≤ pθ(pθ)θθ + 4p2θ

where we used that pt ≥ 0. Integrating the above inequality gives

d

dt

∫ 2π

0

p2θ
2p
dθ ≤

∫ 2π

0

(
pθ(pθ)θθ + 4p2θ

)
dθ

and after integration by parts we get

(4.4)
d

dt

∫ 2π

0

p2θ
2p
dθ ≤

∫ 2π

0

(
− p2θθ + 4p2θ

)
dθ = −I(α(t)).

On the other hand, from the inequality

p pθθ −
1

2
p2θ + 2 p2 = pt ≥ 0

dividing by p and integrating we obtain∫ 2π

0

−1

2

p2θ
p

+ 2 p dθ ≥ 0

or ∫ 2π

0

p2θ
2p
dθ ≤ 2

∫ 2π

0

p dθ ≤ C

since p is bounded for t < −1 < 0. Combining this with (4.4) implies
that ∫ t0

−∞
I(α(t)) dt ≤ lim sup

t→−∞

∫ 2π

0

p2θ
2p
dθ ≤ C.

This implies

lim inf
t→−∞

I(α(t)) ≤ 0.

Indeed, assume that

lim inf
t→−∞

I(α(t)) > 0.
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Then, this means that I(α(t)) ≥ c > 0 for t ≤ t0 � −1. Thus,∫ t0

−∞
I(α(t)) dt ≥ c

∫ t0

−∞
dt = +∞

which contradicts the fact that this integral is bounded. �
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